作业帮 > 数学 > 作业

如图,已知,AD平分∠BAC,GE∥AD交CA的延长线于G,交AB于F,求证:∠AGF=∠AFG

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 09:49:54
如图,已知,AD平分∠BAC,GE∥AD交CA的延长线于G,交AB于F,求证:∠AGF=∠AFG

如图,已知,AD平分∠BAC,GE∥AD交CA的延长线于G,交AB于F,求证:∠AGF=∠AFG
魅:∵AD平分∠BAC
∴∠CAD=∠DAB
∵GE∥AD
∴∠AGF=∠CAD(两直线平行,同位角相等.)
∠DAB=∠AFG(两直线平行,内错角相等.)
∵∠CAD=∠DAB ∠DAB=∠AFG
∴∠AGF=∠AFG
解析:建议标号∠1,∠2.不然做起来标一堆字母看起来很不舒服,也很麻烦.
首先,这道题,要证明∠AGF=∠AFG,你可以导角,也可以证明AF=AG.但是这道题没给任何边相等,所以只能导角.通过平行,平分可以得出角相等(见解题步骤).