如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC相切,切点分别为D,E.过半圆上一点F作半
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/10 17:04:55
如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC相切,切点分别为D,E.过半圆上一点F作半圆的切线,分别交AB,AC于M,N.那么
BM•CN |
BC
连OM,ON,如图
∵MD,MF与⊙O相切, ∴∠1=∠2, 同理得∠3=∠4, 而∠1+∠2+∠3+∠4+∠B+∠C=360°,AB=AC ∴∠2+∠3+∠B=180°; 而∠1+∠MOB+∠B=180°, ∴∠3=∠MOB,即有∠4=∠MOB, ∴△OMB∽△NOC, ∴ BM OC= OB CN, ∴BM•CN= 1 4BC2, ∴ BM•CN BC2= 1 4. 故选B.
如图,在等腰三角形△ABC中,O为底边BC的中点,以O为圆心作半圆与AB,AC相切,切点分别为D,E.过半圆上一点F作半
如图,在等腰直角三角形ABC中,AB=AC=8,O为BC的中点,以O为圆心作半圆,使它与AB,AC都相切,切点分别为D,
如图,在△ABC中,点O是边AC上一点,以点O为圆心作半圆,与边AB相切于点D,交线段OC于点E,作EP⊥ED,交AB的
如图,已知△ABC是等腰三角形,∠C=90°,AC=BC=2,在BC上取一点O,以O为圆心,OC为半径作半圆与AB相切于
如图,在△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆分别与AB、AC边相切于D、E两点,连接OD.
(2011•建邺区一模)如图,在△ABC中,AB=AC,点O为底边上的中点,以点O为圆心,1为半径的半圆与边AB相切于点
如图在△ABC中,角C=90°,AC=9,BC=12.O为BC边上一点,以O为圆心,OB为半径作半圆与BC边和AB边分别
如图,在△ABC中,∠A= 90度,O是BC边上一点,以o为圆心的半圆分别与AB,AC边相切于D,
如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.若
如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.
如图,在△ABC中,∠C= 90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.
如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC,BC相切于点D,E.
|