A是3阶方阵,α是3维列向量,且α,Aα,A²α线性无关.知A³α=Aα.求(A+2E)的行列式
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/15 21:58:40
A是3阶方阵,α是3维列向量,且α,Aα,A²α线性无关.知A³α=Aα.求(A+2E)的行列式
设B=PAP^(-1),
P=(α,Aα,A²α)
则BP=PA=(Aα,A^2*α,A^3*α)
=(Aα,A^2*α,Aα)
观察上式中,Aα,A^2*α线性无关
则由矩阵的乘法运算可凑配出
B=(0 1 0,0 0 1,0 1 0)
又因为B=PAP^(-1)
所以A=P^(-1)BP
A+2E=P^(-1)BP+2E
=P^(-1)BP+2P^(-1)P
=P^(-1)(B+2E)P
所以B+2E为A+2E的相似矩阵
又因为相似矩阵具有相同的行列式
所以求(A+2E)的行列式即可化为计算(B+2E)的行列式
完毕
P=(α,Aα,A²α)
则BP=PA=(Aα,A^2*α,A^3*α)
=(Aα,A^2*α,Aα)
观察上式中,Aα,A^2*α线性无关
则由矩阵的乘法运算可凑配出
B=(0 1 0,0 0 1,0 1 0)
又因为B=PAP^(-1)
所以A=P^(-1)BP
A+2E=P^(-1)BP+2E
=P^(-1)BP+2P^(-1)P
=P^(-1)(B+2E)P
所以B+2E为A+2E的相似矩阵
又因为相似矩阵具有相同的行列式
所以求(A+2E)的行列式即可化为计算(B+2E)的行列式
完毕
设A为n阶方阵,α1,α2,...,αn为线性无关的n个n维列向量.证明:R(A)=n﹤=﹥ Aα1,Aα2,...,A
高代题:设A是n级方阵,α是n维列向量,若A^n-1α≠0,而A^nα=0,试证明α,Aα,…,A^n-1α 线性无关
A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3 ,Aα2=2α2+α3
设A是n阶方阵,α1,α2...αn是n个线性无关的n维向量,证明rankA=n的充分必要条件是Aα1,Aα2,.,Aα
几代:设α是n维列向量(n > 1),则n阶方阵A = ααT 的行列式|A|的值为?
设A是n级方阵,α是n维列向量,若αAn-1≠0,而αAn=0,试证明α,Aα,…,An-1α 线性无关.
设A为三阶方阵,α1,α2,α3为三维线性无关列向量组,且有Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.
A是4乘以3的矩阵,A的列向量组线性无关,求A的秩
已知A是3阶方阵,且A的行列式为-2,求|(2A)^-1+3/4A*|,亲们
A是3阶矩阵,α1,α2,α3,是3维线性无关的列向量,且Aα1=4α1-4α2+3α3,Aα2=-6α1-α2+α3,
设A是3阶方阵,且A的行列式=2,则(2A^*-A^-1)的行列式=
A为三阶方阵a为三维列向量 a,Aa,A的平方a线性无关,A立方a=5Aa-3A平方a,求证矩阵【a,Aa,A四次方a】