(2014•德州一模)如图,在等腰直角△ACB中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/16 02:02:40
(2014•德州一模)如图,在等腰直角△ACB中,∠ACB=90°,O是斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P.有下列结论:
①∠DEO=45°;②△AOD≌△COE;③S四边形CDOE=
①∠DEO=45°;②△AOD≌△COE;③S四边形CDOE=
1 |
2 |
∵在等腰直角△ACB中,∠ACB=90°,O是斜边AB的中点,
∴∠A=∠B=∠ACO=°,OA=OC=OB,∠AOC=90°=∠DOE,
∴∠AOD=∠COE=90°-∠DOC,
在△AOD与△COE中,
∠OAD=∠OCE
OA=OC
∠AOD=∠COE
∴△AOD≌△COE(ASA),
∴OD=OE,
∵∠EOD=90°,
∴∠DEO=45°,
∵△AOD≌△COE,∴S△AOD=S△COE,
∴S四边形CDOE=S△COD+S△COE=S△COD+S△AOD=S△AOC=
1
2S△ABC,
∵△DOE为等腰直角三角形,
∴∠DEO=45°.
∵∠DEO=∠OCE=45°,∠COE=∠COE,
∴△OEP∽△OCE,
∴
OE
OP=
OC
OE,即OP•OC=OE2,
即①②③④都正确;
故答案为:①②③④.
∴∠A=∠B=∠ACO=°,OA=OC=OB,∠AOC=90°=∠DOE,
∴∠AOD=∠COE=90°-∠DOC,
在△AOD与△COE中,
∠OAD=∠OCE
OA=OC
∠AOD=∠COE
∴△AOD≌△COE(ASA),
∴OD=OE,
∵∠EOD=90°,
∴∠DEO=45°,
∵△AOD≌△COE,∴S△AOD=S△COE,
∴S四边形CDOE=S△COD+S△COE=S△COD+S△AOD=S△AOC=
1
2S△ABC,
∵△DOE为等腰直角三角形,
∴∠DEO=45°.
∵∠DEO=∠OCE=45°,∠COE=∠COE,
∴△OEP∽△OCE,
∴
OE
OP=
OC
OE,即OP•OC=OE2,
即①②③④都正确;
故答案为:①②③④.
如图,在等腰直角△ABC中,∠ACB=90°,AC-BC,CH⊥AB于H,D是B上任意一点,AE⊥CD于点E,交CH于点
如图,△ABC中,∠ACB=90°,点O在AC上,以OA为半径的圆o恰好经过斜边AB的中点E,交AC于点D连接ce(1)
如图,在等腰直角△ABC中,∠ACB=90°,CA=CB,D为BC中点,E是AB上的一点,且AE=2EB,求证AD⊥CE
等腰直角三角形 在等腰Rt△ABC中,∠ACB=90,AC=BC,点E在斜边AB上,且AE=2EB,点D是CB的中点,求
如图,在等腰直角△ABC中,AC=BC,∠ACB=90°,AD平分∠CAB交BC边与点D,DE⊥AB于点E,AB=8,求
如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保
已知:如图,在△ABC中,∠ACB=90°,AC=BC,点D是AB的中点,点E,F分别在AC,BC上,AE=CF
如图,在直角三角形ABC中,角ACB=90°,以AC为直角边的圆O与AB边交于点D,过点O作圆O的切线,交BC于点E,
如图5,在△ABC中,∠C=90°点M是斜边AB的中点,将一个直角的顶点置于M,角的两边分别与AC BC交于D E,过点
如图,在等腰直角ABC中,角C=90度,AC=BC,点D,E分别在BC,和AC上,且BD=CE,M是AB的中点,则三角形
如图,在△ABC中,∠ACB=90°,AC=BC,点E在BC上,以AE为斜边作等腰直角三角形ADE,并使点C、D在AE的
如图,在RT△ABC中,∠ACB=90°,点D、E、F分别为AB、BC、AC的中点 求证CD=EF