已知(1+x)+(1+x)^2+(1+x)^3+.+(1+x)^n=a0+a1x+a2x^2+.anx^n,若a1+a2
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 23:23:56
已知(1+x)+(1+x)^2+(1+x)^3+.+(1+x)^n=a0+a1x+a2x^2+.anx^n,若a1+a2+..
已知(1+x)+(1+x)^2+(1+x)^3+......+(1+x)^n=a0+a1x+a2x^2+......anx^n,若a1+a2+......+a(n-1)=29-n,求n
已知(1+x)+(1+x)^2+(1+x)^3+......+(1+x)^n=a0+a1x+a2x^2+......anx^n,若a1+a2+......+a(n-1)=29-n,求n
令x=0,则 (1+x)+(1+x)^2+(1+x)^3+.+(1+x)^n = 1+1^2+...+1^n = n
求得a0=n
令x=1,则 (1+x)+(1+x)^2+(1+x)^3+.+(1+x)^n = 2+2^2+...+2^n = 2^(n+1)-2
a0+a1x+a2x^2+.anx^n = a0+a1+a2+...+an = 2^(n+1)-2
因此 a0+29-n+a(n)=2^(n+1)-2
可知a(n)=1,因此 n+29-n+1=2^(n+1)-2
32=2^(n+1)
n=4你是哪里的学生?
求得a0=n
令x=1,则 (1+x)+(1+x)^2+(1+x)^3+.+(1+x)^n = 2+2^2+...+2^n = 2^(n+1)-2
a0+a1x+a2x^2+.anx^n = a0+a1+a2+...+an = 2^(n+1)-2
因此 a0+29-n+a(n)=2^(n+1)-2
可知a(n)=1,因此 n+29-n+1=2^(n+1)-2
32=2^(n+1)
n=4你是哪里的学生?
在恒等式(1+X)^n=a0+a1X+a2X^2+……+anX^n(n为偶数)中,a0+a1+a2+……+an=?
已知S(x)=a1x+a2x^2+L+anx^n,且a1,a2,L,an,组成等差数列,设S(1)=n^2
已知f(x)=a1x+a2x^2+a3x^3+...+anx^n,n为正整数,a1,a2,a3,...an组成等比数列,
函数f(x)=a1x+a2x^2+.+anX^n,a1,a2,a3,...an成等差数列,n为正偶数,又f(1)=n^2
已知S(x)=a1x+a2x^2+...+anx^n,且a1,a2,...,an组成等差数列,n为正偶数
已知对于数列{an}中,有fn(x)=a1x+a2x^2+...+anx^n,且a1=3,fn(1)=p*(2^n-1/
已知f(x)=a1x+a2x²+.+anx^n,且a1,a2.an组成等差数列(n为正整数),f(1)=n&s
函数f(x)=a1x+a2x^2+.+anX^n,a1,a2,a3,...an成等差数列
已知a3x³+a2x²+a1x+a0=(2x-1)²求a3+a2+a1+a0=?
已知(2x-1)³=a3x³+a2x²+a1x+a0,求a3+a2+a1+a0的值.
高数问题证明方程a0+a1x+a2x^2+.+anx^n=x^n+1(ai>0,i=0,1,2,.,n),在区间(0,+
(x+1)^4=a0+a1x+a2x^2+a3x^3+a4x^4,求a0+a1+a2+a3+a4的值.