若M是抛物线y^2=2x上一动点,点P(3,10/3),设d是点M到准线的距离,要使d+|MP|最小
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 21:09:39
若M是抛物线y^2=2x上一动点,点P(3,10/3),设d是点M到准线的距离,要使d+|MP|最小
求点M的坐标
求点M的坐标
抛物线是指平面内到一个定点和一条定直线l距离相等的点的轨迹.这个定点就是焦点.
对于你这个题,焦点就是F(-0.5,0)
那么d就等于MF的长度
那问题就转化成了使得MF+MP最小的M点的坐标【到这里了,你懂得怎么做了么?】
使得MF+MP最小,这是中学数学里很经典的一个数学模型,你一定要记住,以后还会碰到类似的题目.要使MF+MP最小,根据两点之间直线最短的公理,那么M点应该是PF与抛物线的焦点
所以你把PF所在直线的解析式求出来【P点和F点的坐标分别是(3,10/3)和((-0.5,0)】,然后联立抛物线解析式:y^2=2x,得到的就是M点的坐标.
具体是多少你自己算,我这是告诉你方法,遇到类似的题目,
另外,与刚才讲的那个数学模型比较接近的还有一个:
两点A、B在直线的同一侧,在直线上求一点,是得三点的连线最短.
那么我们就需要选取其中的一个点,如A.做它关于直线的对称点C,然后连接BC所得的直线与原来那条直线相交后得到一个点D,那么AC+BD的值即为所求.
这个模型比上面那个更常见,你自己好好体会!
对于你这个题,焦点就是F(-0.5,0)
那么d就等于MF的长度
那问题就转化成了使得MF+MP最小的M点的坐标【到这里了,你懂得怎么做了么?】
使得MF+MP最小,这是中学数学里很经典的一个数学模型,你一定要记住,以后还会碰到类似的题目.要使MF+MP最小,根据两点之间直线最短的公理,那么M点应该是PF与抛物线的焦点
所以你把PF所在直线的解析式求出来【P点和F点的坐标分别是(3,10/3)和((-0.5,0)】,然后联立抛物线解析式:y^2=2x,得到的就是M点的坐标.
具体是多少你自己算,我这是告诉你方法,遇到类似的题目,
另外,与刚才讲的那个数学模型比较接近的还有一个:
两点A、B在直线的同一侧,在直线上求一点,是得三点的连线最短.
那么我们就需要选取其中的一个点,如A.做它关于直线的对称点C,然后连接BC所得的直线与原来那条直线相交后得到一个点D,那么AC+BD的值即为所求.
这个模型比上面那个更常见,你自己好好体会!
M是抛物线y^2=2x上一点 P(3.2) d是M到准线距离 使d+|MP|最小 求M坐标
已知P是抛物线y^2=2x上的动点,点P到准线的距离为d,且点P在y轴上的射影是M,点A(3.5,4),
已知抛物线方程y=x²,直线l的方程为y=2x-2,设抛物线上一动点M到直线l的距离为d1,M到x轴的距离为d
不过我是笨蛋已知点P是抛物线y^2=2x上的动点,点P到准线的距离为d,点A(7/2,4),则PA+d的最小值是
已知点P是抛物线x2=4y上的一个动点,则点P到点M(2,0)的距离与点P到该抛物线准线的距离之和的最小值为( )
设抛物线y2=4x上一点P到该抛物线准线与直线l:4x-3y+6=0的距离之和为d,若d取到最小值,则点P的坐标为___
抛物线 y²=2Px.(P>0)上一点M到焦点的距离是a(a>p/2)则点M到准线的距离是 点M的横线坐标是
已知点P是抛物线y2=4x上的点,设点P到抛物线的准线的距离为d1,到圆(x+3)2+(y-3)2=1上一动点Q的距离为
抛物线y的平方=2px(p>0)上一点M到焦点的距离是a(a>p/2),则点M到准线的距离是多少?点M的横坐标是...
设定点M(3,103)与抛物线y2=2x上的点P的距离为d1,P到抛物线准线l的距离为d2,则d1+d2取最小值时,P点
高中数学向量题1.已知点A`B`C均在以F点的抛物线y^2=2px(p>)上,点A(m,8)到其准线的距离是10,且点M
抛物线准线、焦点点P是抛物线Y2=2X上的一个动点,则点P到(0,2)的距离与点P到该抛物线准线的距离之和的最小值为多少