作业帮 > 数学 > 作业

P是线段AB上的一点,在AB的同侧作三角形APC和三角形BPD,使PC=PA,PD=PB,角APC=角BPD,连接CD,

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 01:24:55
P是线段AB上的一点,在AB的同侧作三角形APC和三角形BPD,使PC=PA,PD=PB,角APC=角BPD,连接CD,点E,F,G,H分别是AC,AB,BD,CD的中点,顺次连接E,F,G,H.
请问:四边形FEGH的形状
P是线段AB上的一点,在AB的同侧作三角形APC和三角形BPD,使PC=PA,PD=PB,角APC=角BPD,连接CD,
连接AD,BC.
∵∠APC=∠BPD,
∴∠APC+∠CPD=∠BPD+∠CPD.
即∠APD=∠CPB.
又∵PA=PC,PD=PB,
∴△APD≌△CPB(SAS)
∴AD=CB.
∵E、F、G、H分别是AC、AB、BD、CD的中点,
∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.
∴EF= BC,FG= AD,GH= BC,EH= AD.
∴EF=FG=GH=EH.
∴四边形EFGH是菱形.