已知{an}为等比数列 且an=2*3^(n-1) 即首项2 公比3
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 23:00:41
已知{an}为等比数列 且an=2*3^(n-1) 即首项2 公比3
若数列{bn}满足bn=an+((-1)^n)*ln(an) 求数列{bn}的前n项和Sn
若数列{bn}满足bn=an+((-1)^n)*ln(an) 求数列{bn}的前n项和Sn
由题知,
已知{an}为等比数列 且an=2*3^(n-1)
若数列{bn}满足bn=an+((-1)^n)*ln(an)
bn=an+((-1)^n)*ln(an)
=2*3^(n-1)+((-1)^n)*[ln(2)+In(3^(n-1))]
=2*3^(n-1)+ln(2)*(-1)^n+(n-1)*(-1)^n*In(3)
∑[2*3^(n-1)]
=2*(1-3^n)/(1-3)
=3^n-1
∑[ln(2)*(-1)^n]
=In(2)*(-1)*(1-(-1)^n)/(1-(-1))
=In(2)/2*((-1)^n-1)
∑[(n-1)*(-1)^n*In(3)]
=In(3)*[1*(-1)^2+2*(-1)^3+3*(-1)^4+……+(n-1)*(-1)^n]
两边乘以-1得到
(-1)∑[(n-1)*(-1)^n*In(3)]
=In(3)*[1*(-1)^3+2*(-1)^4+3*(-1)^5+……+(n-1)*(-1)^(n+1)]
两式相减得
2∑[(n-1)*(-1)^n*In(3)]
=In(3)*[1*(-1)^2+(-1)^3+(-1)^4+……+(-1)^n-(n-1)*(-1)^(n+1)]
=In(3)[0.5+0.5*(-1)^n-(n-1)*(-1)^(n+1)]
所以,
Sn=∑[2*3^(n-1)]+∑[ln(2)*(-1)^n]+∑[(n-1)*(-1)^n*In(3)]
=(3^n)-1+(In(2)/2)*((-1)^n-1)+(In(3)/2)[0.5+0.5*(-1)^n-(n-1)*(-1)^(n+1)]
前两个是正常的公式法
后一个是错位相减法~
就是计算烦了点,但方法就是这样~
已知{an}为等比数列 且an=2*3^(n-1)
若数列{bn}满足bn=an+((-1)^n)*ln(an)
bn=an+((-1)^n)*ln(an)
=2*3^(n-1)+((-1)^n)*[ln(2)+In(3^(n-1))]
=2*3^(n-1)+ln(2)*(-1)^n+(n-1)*(-1)^n*In(3)
∑[2*3^(n-1)]
=2*(1-3^n)/(1-3)
=3^n-1
∑[ln(2)*(-1)^n]
=In(2)*(-1)*(1-(-1)^n)/(1-(-1))
=In(2)/2*((-1)^n-1)
∑[(n-1)*(-1)^n*In(3)]
=In(3)*[1*(-1)^2+2*(-1)^3+3*(-1)^4+……+(n-1)*(-1)^n]
两边乘以-1得到
(-1)∑[(n-1)*(-1)^n*In(3)]
=In(3)*[1*(-1)^3+2*(-1)^4+3*(-1)^5+……+(n-1)*(-1)^(n+1)]
两式相减得
2∑[(n-1)*(-1)^n*In(3)]
=In(3)*[1*(-1)^2+(-1)^3+(-1)^4+……+(-1)^n-(n-1)*(-1)^(n+1)]
=In(3)[0.5+0.5*(-1)^n-(n-1)*(-1)^(n+1)]
所以,
Sn=∑[2*3^(n-1)]+∑[ln(2)*(-1)^n]+∑[(n-1)*(-1)^n*In(3)]
=(3^n)-1+(In(2)/2)*((-1)^n-1)+(In(3)/2)[0.5+0.5*(-1)^n-(n-1)*(-1)^(n+1)]
前两个是正常的公式法
后一个是错位相减法~
就是计算烦了点,但方法就是这样~
已知{an}为等差数列,{bn}为等比数列,其公比q不等于1,且bi>0(i=1,2,3,4,……,n),若a1=b1,
已知等比数列{bn}是公比为q与数列{an}满足bn=3^an,(1)证明数列{an}是等差数列 (2)若b8=3,且数
已知等比数列{an}中,a1>1,公比q>0,且f(n)=log(2)an,f(1)+f(3)+f(5)=6,f(1)*
已知公比为3的等比数列{bn}与数列{an}满足{bn}=3an,n∈N*,且a1=1.
已知数列{An}是首项为a且公比q不等于1得等比数列,Sn是其前n项和,A1,2A7,3A4成等差数列.
已知数列an是首项为a 且公比q不等于一1的等比数列 sn是其前n项和 a1 2a7 3a4成等差数列
已知数列an是首项为a且公比q不等于1的等比数列,Sn是其前n项和,a1,2a7,3a4成等差数列.
已知等比数列{an}前n项和为sn,且s4/s2=15/2,则公比q等于
一个等比数列An中的各项均为正数,且An=An+1+An+2,求公比q等于多少.
已知数列{An},Sn是其前n项和,且满足3An=2Sn+n,n为正整数,求证数列{An+1/2}为等比数列
数列{an}中,a1=2,a2=3,且{anan+1}是以3为公比的等比数列,若bn=2a2n-1+a2n(n为正整数)
等比数列{an}的前n项和为Sn,已知S1,2S2,3S3成等比数列,则{an}的公比为_____.