作业帮 > 数学 > 作业

若D,E分别是等边三角形ABC两边AC,CB延长线的点,且AD=CE,BD与AE交于F,求角AFD的度数

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 14:44:36
若D,E分别是等边三角形ABC两边AC,CB延长线的点,且AD=CE,BD与AE交于F,求角AFD的度数
若D,E分别是等边三角形ABC两边AC,CB延长线的点,且AD=CE,BD与AE交于F,求角AFD的度数
60度
解法:
在三角形AEB和三角形BDC中,AB=BC,BE=CD,角ABE=120度,角BCD也是120度,所以两个三角形全等.所以角CBD=角BAE,角CDB=角AEB.
于是角AFD = 角AEB+角FBE (三角形外角等于另两个内角和)
= 角AEB + 角CBD (FBE和CBD是对顶角)
= 角CDB + 角CBD (代入刚才得到的角相等的转换)
= 180 - 角DCB = 60度