近世代数4,A={1,2,3,4,5},在A的幂集2A上定义关系R:(S,T)∈R当且仅当|S|=|T|.证明该该关系是
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 21:55:59
近世代数
4,A={1,2,3,4,5},在A的幂集2A上定义关系R:(S,T)∈R当且仅当|S|=|T|.证明该该关系是等价关系,且给出它的等价类和商集.
5,A={1,2},B={a,b,c}求:A×B,B×A,A×A,B×B
6,在下述代数系统(A,*)中是否存在单位元?1)A为实数集,a*b=a+b-ab 2),A为正实数集,a*b=ab
4,A={1,2,3,4,5},在A的幂集2A上定义关系R:(S,T)∈R当且仅当|S|=|T|.证明该该关系是等价关系,且给出它的等价类和商集.
5,A={1,2},B={a,b,c}求:A×B,B×A,A×A,B×B
6,在下述代数系统(A,*)中是否存在单位元?1)A为实数集,a*b=a+b-ab 2),A为正实数集,a*b=ab
第4题:
任意S,T,U∈2^A,显然|S|=|S|==>(S,S)∈R
又若(S,T)∈R==>|S|=|T|==>|T|=|S|==>(T,S)∈R
若(S,T)∈R and (T,U)∈R==>|T|=|S|=|U|==>(S,U)∈R
因此R是等价关系
其等价类有6个,分别是元素个数为0,1,2,3,4,5的6类子集.
2^A/R={U||U|=1,2,3,4,5,6}UΦ
第5题:
A×B={(1,a)(1,b)(1,c)(2,a)(2,b)(2,c)}
B×A={(a,1)(b,1)(c,1)(a,2)(b,2)(c,2)}没什么可以说的,自己写吧
第6题:
(1)a+e-ae=a==>e-ae=0(任意a成立)==>e=0可以验证a*e=a=e*a
存在
(2)e=1,可验证满足
任意S,T,U∈2^A,显然|S|=|S|==>(S,S)∈R
又若(S,T)∈R==>|S|=|T|==>|T|=|S|==>(T,S)∈R
若(S,T)∈R and (T,U)∈R==>|T|=|S|=|U|==>(S,U)∈R
因此R是等价关系
其等价类有6个,分别是元素个数为0,1,2,3,4,5的6类子集.
2^A/R={U||U|=1,2,3,4,5,6}UΦ
第5题:
A×B={(1,a)(1,b)(1,c)(2,a)(2,b)(2,c)}
B×A={(a,1)(b,1)(c,1)(a,2)(b,2)(c,2)}没什么可以说的,自己写吧
第6题:
(1)a+e-ae=a==>e-ae=0(任意a成立)==>e=0可以验证a*e=a=e*a
存在
(2)e=1,可验证满足
设S={1,2,3,4},并设A=SxS,在A上定义关系R为:R并且当a+b=c+d,证明R是等价关系
定义自然数集的笛卡儿乘积上的关系R:(a,b)R(c,d) 当且仅当a+d=b+c 证明这是等价
离散数学证明等价关系设A为正整数集,在A上定义二元关系R:属于R当且仅当xv=yu,证明R是一个等价关系,
设A=(1,2,3)R为AxA上的等价关系,且属于R.当且仅当a+b=c+d 问:(1)设I为AxA上的恒等关系,求R-
(近世代数)证明:M是R的极大理想,当且仅当R/M是单环.
设A是正整数集合,在AxA上定义二元关系R如下:属于R当且仅当xv=yu.证明:关系R满足自反性、对称性、传递性
设F是从A到B的一个函数,定义A上的关系R:aRb当且仅当f(a)=f(b),证明:R是A上的等价关系.
离散数学:设A=(1,2,3)R为AxA上的等价关系,R={,,}求r(R),s(R),t(R)
已知a和b是非零向量,m=a+tb(t∈R),若|a|=1,|a|=2,当且仅当t=1/4时,|m|取最小值,a和b的夹
关系的闭包设集合A={a,b,c},在A上的关系是R={(a,a),(a,b),(b,c)},求r(R),S(R),t(
设集合A有一个划分S={S1,S2,……,Sm},先定义一个关系R,aRb当且仅当a,b在同一划分块中.
设R.S及T是集合A上的二元关系,证明(RºS)ºT=Rº(SºT)