f(x)在x=a附近有定义,若 f ' (a)=1,则存在δ>0,使得f(x)在(a-δ,a+δ)上严格单调,这句话为什
若对于定义在R上的连续函数f(x),存在常数a(a∈R),使得f(x+a)+af(x)=0对任意的实数
若对于定义在R上的连续函数f(x),存在常数a(a∈R),使得f(x+a)+af(x)=0对任意的实数x成立,则称f(x
已知函数f(x)=x3-ax2+3x+b,是否存在实数a,使得f(x)在x∈(-2,- 1/6)上必为单调减函数?若存在
函数f(x)连续,且fˊ(x)>0,则存在δ>0,使得 ( ) A f(x)在(0 ,δ)上单调增加
已知函数y=f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x+x2,若存在正数a,b,使得当x∈[a,b]时,f
设函数 f(x)在[0,2a]上连续,且 f(0) = f(2a),证明:存在Z属于[0,a),使得 f(Z) = f(
b>a>0,f(x)在[a,b]上连续,在(a,b)内可导,证明,存在n属于(a,b)使得f(a)-f(b)=n(lna
定义在R上函数f(x)满足f(-x)=1/f(x)>0,又g(x)=f(x)+c,c为常数,在{a,b}上是单调
已知函数f(x)=x+a/x,a>0.若f(1)=f(2),证明f(x)在(0,2] 上是单调递减
已知定义在R上的函数f(x)满足:(1)f(-x)+f(2a+x)=0,(2)f(x)在[a,+∞)上单调递增,若x1+
A.定义在(a,b)上的函数f(x),若存在x1,x2∈(a,b),使得x1
已经定义在R上的函数为分段函数,f(x)=x^2+1,x≥0;x+a-1,x[0 若f(x)在(-无穷,正无穷)上单调递