作业帮 > 数学 > 作业

如图(1),PC是⊙O的直径,PA与PB是弦,且∠APC=∠BPC.

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 08:09:53
如图(1),PC是⊙O的直径,PA与PB是弦,且∠APC=∠BPC.

(1)求证:PA=PB;
(2)如果点P是由圆上运动到圆外,PC过圆心.如图(2),是否仍有PA=PB?为什么?
(3)如图(3),如果点P由圆上运动到圆内呢?
如图(1),PC是⊙O的直径,PA与PB是弦,且∠APC=∠BPC.
(1)作OE⊥PA于点E,OF⊥PB于点F,
∵∠APC=∠BPC,
∴OE=OF,
可证△POE≌△POF,
∴PE=PF.
又∵PE=
1
2PA,PF=
1
2PB,
∴PA=PB.

(2)、(3)结论成立.
(2)证明:作OE⊥PA于点E,OF⊥PB于点F,
∵∠APC=∠BPC,
∴OE=OF,
∴AD=BG,
∵DE=AE,GF=BF,
∴DE=GF,AE=BF.
在Rt△OPE与Rt△OPF中,


OE=OF
OP=OP,
∴Rt△OPE≌Rt△OPF(HL),
∴PE=PF.
∴PA=PB.
(3)作OE⊥PA于点E,OF⊥PB于点F,设延长AP交圆于点H,延长BP交圆于点G,
∵∠APC=∠BPC,
∴OE=OF,
根据在同圆中圆心距相等,则相对应的弦相等,
∴AH=BG,
△POE≌△POF,
∴PE=PF,AE=BF,EH=FG,
∴EH-PE=GF-PF,
即PH=PG,
∴PA=PB.