方程AX=B有两个不同的解,是说对应的AX=0的基础解系有两个线性无关的向量,还是说有一个特征向量加
线性代数问题n阶矩阵A 有k个线性无关的特征向量 则Ax=0的基础解系有k个向量吗?为什么?
线性代数:设a是非齐次方程组AX=B的一个向量解,b,c是对应的齐次线性方程组AX=0的两个线性无关
怎么理解 AX=b的系数矩阵A的行向量组线性无关,则该方程有解
为什么一个特征值不能对应两个线性无关的特征向量?
老师,Ax=b,对于任何b有解的充要条件为什么是行向量组线性无关.
n阶矩阵A的伴随矩阵不等于0,Ax=b有四个互不相等的解,Ax=0的基础解系有几个线性无关的解向量
n 阶方阵 A ,齐次线性方程组 AX = 0 有两个线性无关的解向量,A*为 A 的伴随矩阵,证明:
线性代数:矩阵A有3个线性无关的特征向量,λ=2是A的二重特征值,则λ=2有两个线性无关的特征向量.
证明线性无关的向量组α1,α2.αs是线形方程组Ax=0的基础解系,向量B不是方程组AX=0的解.证明B+α1,B+α2
矩阵A=1212;01TT;1T01齐次线性方程组Ax=0的基础解析含有两个线性无关的解向量,试求方程组Ax=0的全部解
n 阶方阵 A ,齐次线性方程组 AX = 0 有两个线性无关的解向量,A*为 A 的伴随矩阵为什么Ax=0的解都是A*
设非齐次线性方程组AX=b有3个线性无关的解 a1,a2,a3 则 a2-a1,a3-a1 是导出组 AX=0 的两个线