作业帮 > 数学 > 作业

试说明:任意五个连续整数的平方和不是完全平方数

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 12:49:28
试说明:任意五个连续整数的平方和不是完全平方数
试说明:任意五个连续整数的平方和不是完全平方数
证明:
设五个连续整数为m-2,m-1,m,m+1,m+2.其平方和为S.
那么S
=(m-2)^2+(m-1)^2+m^2+(m+1)^2+(m+2)^2
=5(m^2+2).
∵m^2的个位数只能是0,1,4,5,6,9
∴m^2+2的个位数只能是2,3,6,7,8,1
∴m^2+2不能被5整除.
而5(m2+2)能被5整除,
即S能被5整除,但不能被25整除.
∴五个连续整数的平方和不是完全平方数