设数列{an}的前n项和Sn=[(n+1)/2]×(bn),其中{bn}是首项为1,公差为2的等差数列
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 08:46:06
设数列{an}的前n项和Sn=[(n+1)/2]×(bn),其中{bn}是首项为1,公差为2的等差数列
求数列{an}的通项公式.以下是我的解法,
bn=1+2(n-1)=2n-1;a1=S1;Sn=[(n+1)(2n-1)]/2=[(1+an)n]/2;所以2n^2+n+1=n+an*n;an=2n-(1/n)我认为是错的可是又不知道错在哪里.如果用an=Sn-Sn-1结果就不同了
求数列{an}的通项公式.以下是我的解法,
bn=1+2(n-1)=2n-1;a1=S1;Sn=[(n+1)(2n-1)]/2=[(1+an)n]/2;所以2n^2+n+1=n+an*n;an=2n-(1/n)我认为是错的可是又不知道错在哪里.如果用an=Sn-Sn-1结果就不同了
相对于这道题,你的解法,Sn=[(n+1)(2n-1)]/2=[(1+an)n]/2,这个步骤是错的.
在这个[(1+an)n]/2式子中,n还可以等于1,但是你已经事先把a1=1代入式子,也就是说,[(1+an)n]/2这个式子的n与[(n+1)(2n-1)]/2的n是不同步的,即左右两个式子的n是不同的.例如当n= 1时,Sn=[(n+1)(2n-1)]/2=1,但是此时a1=1,an必不等于1,所以[(1+an)n]/2不等于1,也就是说Sn=[(n+1)(2n-1)]/2=[(1+an)n]/2不成立.
正确的方法应该是先排除n=1的情况,然后再用这个式子.或者更明了一点直接用an=Sn-Sn-1.我建议你用后一种,不容易出错,也不易产生n出现不同步的情况.
在以后数列的学习中,还会有很多这样的例子,一定要注意不同的数列的n之间是不是保持有同步性.
在这个[(1+an)n]/2式子中,n还可以等于1,但是你已经事先把a1=1代入式子,也就是说,[(1+an)n]/2这个式子的n与[(n+1)(2n-1)]/2的n是不同步的,即左右两个式子的n是不同的.例如当n= 1时,Sn=[(n+1)(2n-1)]/2=1,但是此时a1=1,an必不等于1,所以[(1+an)n]/2不等于1,也就是说Sn=[(n+1)(2n-1)]/2=[(1+an)n]/2不成立.
正确的方法应该是先排除n=1的情况,然后再用这个式子.或者更明了一点直接用an=Sn-Sn-1.我建议你用后一种,不容易出错,也不易产生n出现不同步的情况.
在以后数列的学习中,还会有很多这样的例子,一定要注意不同的数列的n之间是不是保持有同步性.
已知数列{an}的前n项和Sn=n(bn),其中{bn}是首项为1,公差为2的等差数列
设数列an前n项和Sn已知a1=a2=1 bn=nSn+(n+2)an数列bn公差为d的等差数列n属于N...
数列an的前n项和Sn=nbn,其中数列{bn}是首项为1,公差为2的等差数列,求{an}的通向公式
设等差数列{an}的前 n项和为Sn,且 Sn=(an+1)^/2(n属于N*)若bn=(-1)nSn,求数列{bn}的
数列{an}是首项为2,公差为1的等差数列,其前n项的和为Sn. ; 设bn
设等差数列{an}的前n项和为Sn,且Sn=((an+1)/2)平方(n属于正整数),若bn=(-1)^nSn,求数列{
设数列{bn}的前n项和为Sn,且bn=2-2Sn,数列{an}为等差数列,且a5=14,a7=20 (1)求数列{bn
设数列{bn}的前n项和为Sn,且Sn=1-bn/2;数列{an}为等差数列,且a6=17,a8=23,
设等差数列{An}的前n项和为Sn,且Sn=(An+1/2)²,n∈N,若bn=(-1)^n*Sn,求数列bn
已知数列an是首项为16,公差为32的等差数列,数列bn的前n项和Tn=2-bn.1.求数列{an}的前n项和Sn与bn
设数列an的前n项和为sn,sn=n^2+n,数列bn的通项公式bn=x^(n-1)
设数列Bn的前n项和为Sn,且Bn=2-2Sn.数列An为等差数列,且A5=10,A7=14.(1)求数列An、{bn}