如图,△ABC中,AC=BC,∠ACB=90°,点D在AC上,点E在BC延长线上,CD=CE,BD的延长线交AE于点F,
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/14 12:40:36
如图,△ABC中,AC=BC,∠ACB=90°,点D在AC上,点E在BC延长线上,CD=CE,BD的延长线交AE于点F,连CF,下列结论:
①AE=BD;②FD2+FE2=2CD2;③∠ACF=∠CBF;④FE+FD=
①AE=BD;②FD2+FE2=2CD2;③∠ACF=∠CBF;④FE+FD=
2 |
①在△ACE和△BCD中,
AC=BC
∠ACE=∠ACB
CE=CD ,
∴△ACE≌△BCD(SAS),
∴AE=BD.
故①正确;
②连接ED,
∵△ACE≌△BCD,
∴∠EAC=∠EBF.∠AEB=∠BDC.
∵∠ADF=∠BDC,
∴∠AFD=∠ACB=90°.
∴ED2=DF2+EF2,CE2+CD2=ED2,
∴FD2+FE2=CE2+CD2;
∵CD=CE,
∴FD2+FE2=2CD2;故②正确.
③∵∠AFD=∠ACB=90°.
∴A、F、C、B四点共圆,
∴∠ACF=∠ABF.
∴只有当F是AE的中点时,∠ACF=∠CBF成立,其余情况都不成立,故③错误;
④延长FE至G,使EG=FD,连接CG,
∵∠FDC+∠BDC=180°,∠FEC+∠GEC=180°,且∠AEB=∠BDC,
∴∠FDC=∠GEC.
在△CDF和CEG中,
FD=GE
∠FDC=∠GEC
DC=EC,
∴△CDF≌CEG(SAS),
∴CF=CG,∠DCF=∠ECG,
∵∠DCF+∠FCE=90°,
∴∠GCE+∠FCE=90°,
即∠GCF=90°.
∴GF2=CF2+CG2,
∴GF2=2CF2,
∴GF=
2CF,
∴GE+EF=
2CF,
∴EF+FD=
2CF故④成立.
∴成立的结论有①②④.
故选B.
AC=BC
∠ACE=∠ACB
CE=CD ,
∴△ACE≌△BCD(SAS),
∴AE=BD.
故①正确;
②连接ED,
∵△ACE≌△BCD,
∴∠EAC=∠EBF.∠AEB=∠BDC.
∵∠ADF=∠BDC,
∴∠AFD=∠ACB=90°.
∴ED2=DF2+EF2,CE2+CD2=ED2,
∴FD2+FE2=CE2+CD2;
∵CD=CE,
∴FD2+FE2=2CD2;故②正确.
③∵∠AFD=∠ACB=90°.
∴A、F、C、B四点共圆,
∴∠ACF=∠ABF.
∴只有当F是AE的中点时,∠ACF=∠CBF成立,其余情况都不成立,故③错误;
④延长FE至G,使EG=FD,连接CG,
∵∠FDC+∠BDC=180°,∠FEC+∠GEC=180°,且∠AEB=∠BDC,
∴∠FDC=∠GEC.
在△CDF和CEG中,
FD=GE
∠FDC=∠GEC
DC=EC,
∴△CDF≌CEG(SAS),
∴CF=CG,∠DCF=∠ECG,
∵∠DCF+∠FCE=90°,
∴∠GCE+∠FCE=90°,
即∠GCF=90°.
∴GF2=CF2+CG2,
∴GF2=2CF2,
∴GF=
2CF,
∴GE+EF=
2CF,
∴EF+FD=
2CF故④成立.
∴成立的结论有①②④.
故选B.
已知Rt△ABC中,∠ACB=90°,CA=CB,点D在BC的延长线上,点E在AC上,且CD=CE,延长BE交AD于点F
已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长
如图,在△ABC中,∠B=∠ACB,点D在AB边上,点E在AC边的延长线上,且BD=CE,连接DE交BC于点F,求证DF
如图.在△ABC中.AB=AC.D点在BC的延长线上.点E在AC上.且AD=AE.DE的延长线交BC于点F.求证:DF⊥
1.在Rt△ABC中,∠ACB=90°,CA=CB,点D在BC的延长线上,点E在AC上,且CD=CE,延长BE交AD于点
如图 已知在△abc中,角acb=90°,cd垂直ab于点d,点e在ac上,ce=bc,过e点作ac的垂线,交cd的延长
如图,在△ABC中,AB=AC,∠ACB=90°,AE平分∠BAC交BC于点E,BD⊥AE于点D,DM⊥AC交AC的延长
如图,在△ABC中,∠ACB=90°,AC=BC,点E在BC上,过点C作CF⊥AE于点F,延长CF使CD=AE,连接BD
如图,在△ABC中,点E,D分别是边AB,AC上的点,BD,CE交于点F,AF的延长线BC于点H,若∠1=∠2,AE=A
如图10.在Rt△ABC中,∠ACB=90°.D是BC延长线上的一点,BD的垂直平分线交AB于点E,DE交AC于点F,试
已知:如图,在△ABC中,角ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E电作AC的垂线交CD的延长线
如图,在△ABC中,∠ACB=90°,AE=BD,D为AC上的点,延长BC到点E,使CE=CD求证:BD⊥AE