平面向量共线在平面直角坐标系中,O为坐标原点,A、B、C三点满足向量OA=1/3向量OA+2/3向量OB,求证ABC三点
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 13:07:19
平面向量共线
在平面直角坐标系中,O为坐标原点,A、B、C三点满足向量OA=1/3向量OA+2/3向量OB,求证ABC三点共线
错了 应该是向量OC=1/3向量OA+2/3向量OB
在平面直角坐标系中,O为坐标原点,A、B、C三点满足向量OA=1/3向量OA+2/3向量OB,求证ABC三点共线
错了 应该是向量OC=1/3向量OA+2/3向量OB
你这个题目是不是弄错了,向量OA=1/3向量OA+2/3向量OB 不对,应该是 向量OA=1/3向量OC+2/3向量OB 吧.这样的话,把向量OA拆成 1/3向量OA+2/3向量OA=1/3向量OC+2/3向量OB ,然后移项,得到 1/3(向量OA-向量OC)=2/3(向量OB-向量OA) ,得到 1/3向量CA=2/3向量AB ,得到向量CA=2向量AB,于是A,B,C三点共线
再问: ,应该是 向量OC=1/3向量OA+2/3向量OB
再答: 那道理是一样的,只要把向量OC拆成 1/3向量OC+2/3向量OC 然后照我上面写着继续计算,其结果还是一样,都可以证明出来的
再问: ,应该是 向量OC=1/3向量OA+2/3向量OB
再答: 那道理是一样的,只要把向量OC拆成 1/3向量OC+2/3向量OC 然后照我上面写着继续计算,其结果还是一样,都可以证明出来的
在平面直角坐标系中,o为坐标原点,A、B、C三点满足向量OC=1/3向量OA+2/3向量OB
在平面直角坐标系中,O为坐标原点,A、B、C三点满足向量OC=1/3向量OA+2/3向量OB.
在平面直角坐标系中,O为坐标原点,ABC三点满足向量(OC=向量OA/3)+(2向量OB/3).求证:1.ABC三点共线
在平面直角坐标系中,O为坐标原点,A、B、C三点满足三点满足向量OC=1/3向量OA+2/3向量OB.
在平面直角坐标系中,o为坐标原点,A,B,C三点满足向量OC=1/3OA+2/3OB (都是向量).求证A,B,C三点共
在平面直角坐标系中,O为坐标原点,A,B,C三点满足向量OC = 2/3 向量OA + 1/3
在平面直角坐标系中O为坐标原点,ABC三点共线满足oc=(a^2-2a+4/3)向量OA
平面直角坐标系中,O为坐标原点,已知两点A(2,-1),B(-1,3),若点C满足向量OC=a向量OA+b向量OB
在平面直角坐标系中,o为原点,a(1,0),b(2,2),若点c满足向量oc=向量oa+t(向量ob-向量oa),
在平面直角坐标系中,O为坐标原点,A,B,C三点满足OC=OA/3+2OB/3.(1)求证:A,B,C三点共线.(2)求
平面直角坐标系中,o为坐标原点,已知两点A(3,1)B(-1,3),若点C满足向量OC=α向量OA+β向量OB,α+β=
已知A、B、C是平面上不共线三点,动点P满足向量OP=1/3[(1-λ)向量OA+(1-λ)向量OB+(1+2λ)向量O