已知函数f(x)=2cos2ωx+2sinωxcosωx+1(x∈R,ω>0)的最小值正周期是π/2
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 11:40:25
已知函数f(x)=2cos2ωx+2sinωxcosωx+1(x∈R,ω>0)的最小值正周期是π/2
若y=f(x+φ)为偶函数,求y值
若y=f(x+φ)为偶函数,求y值
f(x)=2cos 2wx+2sin wx cos wx +1
=2cos 2wx+sin 2wx +1
=√5 sin (2wx+a) +1 ,a=arctan2
T=π/2,则:2w=4,w=2.
于是:f(x)=√5 sin(4x+a)+1,a=arctan2
y=f(x+φ)=√5 sin(4x+4φ+a)是偶函数,于是:4φ+a=π/2.
于是:φ=π/4-(1/4)arctan2 ,y=√5 sin(4x+π/2)
=2cos 2wx+sin 2wx +1
=√5 sin (2wx+a) +1 ,a=arctan2
T=π/2,则:2w=4,w=2.
于是:f(x)=√5 sin(4x+a)+1,a=arctan2
y=f(x+φ)=√5 sin(4x+4φ+a)是偶函数,于是:4φ+a=π/2.
于是:φ=π/4-(1/4)arctan2 ,y=√5 sin(4x+π/2)
(2009•荆州模拟)已知函数f(x)=3sinωxcosωx−cos2ωx+12(ω>0,x∈R)的最小正周期为π2.
已知函数f(x)=23sinωxcosωx−2cos2ωx+1(x∈R,ω>0)的周期为π.
已知函数f(x)=3sinωxcosωx−cos2ωx(ω>0)的最小正周期为π2
已知函数fx=2cos²ωx+2sinωxcosωx+1(x∈R,ω>0)的最小正周期是2分之π. 求ω,fx
已知函数f(x)=2sinωxcosωx-2cos2ωx(x∈R,ω>0),相邻两条对称轴之间的距离等于π2.
已知函数f(x)=cos2ωx+3sinωxcosωx(ω>0)的最小正周期为π.
已知函数f(x)=2sinωxcosωx+23sin2ωx−3(ω>0)的最小正周期为π.
已知函数f(x)=2sinωxcosωx(ω>0,x∈R)1.求f(x)的值域2.若f(x)的最小正周期为4π,求ω的值
已知函数f(x)=3sinωx•cosωx-cos2ωx,(ω>0)的最小正周期T=π2.
已知函数f(x)=−3sin2ωx+2sinωx•cosωx+3cos2ωx,其中ω>0,且f(x)的最小正周期为π.
已知函数fx =cos^2ωx+√3sinωxcosωx(ω>0)的最小正周期是π(1)求f(2/3π)的值⑵求函数f(
f(x)=根号3sinωxcosωx-cos²ωx-1/2(ω>0,x∈R)的最小正周期为π (1)求函数f(