an=1/(3n-2) 记Sn=a1*a2+a2*a3+...+an*a(n+1) 求证:Sn<1/3
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/18 06:54:09
an=1/(3n-2) 记Sn=a1*a2+a2*a3+...+an*a(n+1) 求证:Sn<1/3
an=[2的(n-2)次方]乘以(3n-1)求前n项和公式
an=[2的(n-2)次方]乘以(3n-1)求前n项和公式
1.an*an+1=1/[(3n-2)(3n+1)]=1/3[1/(3n-2)-1/(3n+1)]
Sn=1/3[1-1/4+1/4-1/7+…+1/(3n-2)-1/(3n+1)]=1/3[1-1/(3n+1)]<1/3
2.an=(3n-1)*2^(n-2)
Sn=2(1/2)+5+8*2+…+(3n-1)*2^(n-2) ①
2Sn=2*[2(1/2)+5+8*2+…+(3n-1)*2^(n-2)]
=2+5*2+8*4+…+(3n-4)*2^(n-2)+(3n-1)*2^(n-1) ②
②-①:Sn=(3n-1)*2^(n-1)-1-3*[1+2+2^2+…+2^(n-2)]
=(3n-1)*2^(n-1)-1-3*[2^(n-1)-1]
=(3n-4)*2^(n-1)+2.
Sn=1/3[1-1/4+1/4-1/7+…+1/(3n-2)-1/(3n+1)]=1/3[1-1/(3n+1)]<1/3
2.an=(3n-1)*2^(n-2)
Sn=2(1/2)+5+8*2+…+(3n-1)*2^(n-2) ①
2Sn=2*[2(1/2)+5+8*2+…+(3n-1)*2^(n-2)]
=2+5*2+8*4+…+(3n-4)*2^(n-2)+(3n-1)*2^(n-1) ②
②-①:Sn=(3n-1)*2^(n-1)-1-3*[1+2+2^2+…+2^(n-2)]
=(3n-1)*2^(n-1)-1-3*[2^(n-1)-1]
=(3n-4)*2^(n-1)+2.
已知数列{an}的前n项和sn=n^2+2n+3,求和1/a1+a2+1/a2+a3+1/a3+a4+.+1/an+an
数列an的前n项和为Sn,a1=t,2a(n+1)=-3Sn+4 求a2,a3 t为何值an等比
数列an满足sn=3an-1/2 计算a1,a2,a3,a4 猜an通项 求an前n项和sn
设数列{an}的前n项和为sn,已知a1+2a2+3a3+…+nan=(n-1)Sn+2n(n∈N*)
设an=根号n+根号(n+1),求Sn=a1+a2+a3+...+an
已知数列an的前n项和为Sn=n^2+2n,求和:1/(a1*a2)+1/(a2*a3)+...+1/(an*a(n+1
设数列{an}的前n项和为Sn,并且满足2Sn=an²+n,an>0.(1)求a1,a2,a3.(2)猜想{a
在数列{an}中,a1=1,an+1=3Sn (n>=1) 求证a2,a3……an为等比数列
在数列{an}中,a1=1,an+1=3Sn (n>=1) 求证a2,a3……an为等比数列.
等差数列{an}中,a1+a2+a3=21,an-2+an-1+an=57,Sn=520,求n.
已知数列{an}的前n项和Sn=n²+3n+1,求a1+a2+a3+...+a21
设数列{an}的前n项和为Sn,a1+2a2+3a3.+nan=(n-1)Sn+2n,