作业帮 > 数学 > 作业

求极限1/sqrt(1^2+n^2)+1/sqrt(2^2+n^2)+.+1/sqrt(n^2+n^2)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 13:49:39
求极限1/sqrt(1^2+n^2)+1/sqrt(2^2+n^2)+.+1/sqrt(n^2+n^2)
求极限1/sqrt(1^2+n^2)+1/sqrt(2^2+n^2)+.+1/sqrt(n^2+n^2)
这道题可以把要求的极限化为一个定积分来做.
lim (n→∞) 1/sqrt(1^2+n^2)+1/sqrt(2^2+n^2)+.+1/sqrt(n^2+n^2)
= lim (n→∞) 1/n*1/sqrt((1/n)^2+1^2) +1/n*1/sqrt((2/n)^2+1^2)+.+1/n*1/sqrt((n/n)^2+1^2)
= lim (n→∞) (1/n-0/n)*1/sqrt((1/n)^2+1^2) +(2/n-1/n)*1/sqrt((2/n)^2+1^2)+.+(n/n-(n-1)/n)*1/sqrt((n/n)^2+1^2)
令f(x)=1/sqrt(x^2+1),a[k]=k/n,其中k=0,1,2...n-1,n.
则对于k