lim (1-1/2^2)(1-1/3^2)……(1-1/n^2) 其中n趋向于∞,请问这个极限怎么求
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 22:16:36
lim (1-1/2^2)(1-1/3^2)……(1-1/n^2) 其中n趋向于∞,请问这个极限怎么求
记:
sn=(1-1/2^2)(1-1/3^2)……(1-1/n^2)
=(1-1/2)(1+1/2)*(1-1/3)(1+1/3)*……*(1-1/n)(1+1/n)
=(1/2)(3/2)(2/3)(4/3)……((n-1)/n)((n+1)/n)
=(1/2)((n+1)/n)
=(n+1) / 2n
故,
lim (1-1/2^2)(1-1/3^2)……(1-1/n^2)
=lim sn
=lim (n+1) / 2n
=lim (n+1)/n / 2n/n
=lim (1+(1/n)) / 2
=1/2
有不懂欢迎追问
sn=(1-1/2^2)(1-1/3^2)……(1-1/n^2)
=(1-1/2)(1+1/2)*(1-1/3)(1+1/3)*……*(1-1/n)(1+1/n)
=(1/2)(3/2)(2/3)(4/3)……((n-1)/n)((n+1)/n)
=(1/2)((n+1)/n)
=(n+1) / 2n
故,
lim (1-1/2^2)(1-1/3^2)……(1-1/n^2)
=lim sn
=lim (n+1) / 2n
=lim (n+1)/n / 2n/n
=lim (1+(1/n)) / 2
=1/2
有不懂欢迎追问
求极限:Lim(1+1/n-1/n^2)^n n趋向于正无穷
求极限 n趋向于无穷 lim((根号下n^2+1)/(n+1))^n
求极限lim(n趋向于无穷)(n+1)(根号下(n^2+1)-n)
求极限 lim n[1/(n^2+1)+1/(n^2+2^2)+……+1/(n^n+n^n)] (n趋向于无穷大,n^n
lim x趋向于∞(2n-1/3+根号n平方+1)的极限
极限计算 lim (1+2+3+...+n)/n^2=?(n趋向于无穷大)
利用定积分定义求极限lim(n趋向于无穷大)(1+√2+√3+…+√n)/n√n
求极限 lim 【(1+2+3+...+n)/(n+2)-n/2】趋向是无穷
lim[n/(n*n+1*1)+n/(n*n+2*2)+...+n/(n*n+n*n)],当x趋向无穷大时,怎么求极限,
求下列极限.lim(n趋向于无穷大)(2x次方)*(sin*1/2x次方)
求下列极限 lim{n[ln(n+2)-lnn]}趋向于无穷 lim ln(1+2x)/sin3x趋向于0
求当n趋向无限大时lim[(n+1)^2/(n-1)]的极限?