∫∫∫xydv,D是柱面x^2+y^2=1及平面z=1,z=0,x=0,y=0所围成的在第一象限的闭区域
∫∫∫(xy)dxdydz ,其中Ω是由柱面x^2+y^2=1及平面z=1,z=0,x=0,y=0所围成的在第一卦限的闭
∫∫∫Ωxzdsdydz,其中Ω是由平面x=y,y=1,z=0及抛物柱面y=x^2所围成的闭区域
设∑是柱面x^2+y^2=9及平面z=0,z=3所围成的区域的整个边界曲面,计算∫∫(x^2+y^2)dS
设∑是由旋转抛物面z=x^2+y^2,平面z=0及平面z=1所围成的区域,求三重积分∫∫∫(x^2+y^2+z)dxdy
∫∫∫xzdxdydz,其中ω是曲面z=0,z=y,y=1,以及抛物柱面y=x^2所围成的闭区域
三重积分 求由柱面x=y^2,平面z=0及x+z=1所围成的立体
用柱面坐标计算三重积分(Ω)∫∫∫xyzdy,其中Ω是柱面x^2+y^2=1与平面z=0与z=3所围成的面积
求∫∫xdσ,其中D是由直线y=x,y=0及曲线x^2+y^2=4,x^2+y^2=1所围成在第一象限内的闭区域.
求柱面x^2+y^2=1,平面x+y+z=3及z=0围成立体的体积
计算二重积分(y-z)x^2dzdx+(x+y)dxdy其中是柱面x^2+y^2=1及平面z=0
求有曲面z^2=x^2+y^2,柱面x^2+y^2=1及z=0所围成的曲顶柱体的体积 z^2表示z的2次幂
求柱面z=x^2在平面区域D:0