已知数列an满足a1=p,a2=p+1,a(n+2)-2a(n+1)+an=n-20,其中p时给定的实数,且n属于N+,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 05:59:07
已知数列an满足a1=p,a2=p+1,a(n+2)-2a(n+1)+an=n-20,其中p时给定的实数,且n属于N+,试求n值,使
an的值最小
an的值最小
a(n+2)-2a(n+1)+an=[a(n+2)-a(n+1)]-[a(n+1)-a(n)]=n-20
设:b(n)=a(n+1)-a(n)
于是:b(n+1)-b(n)=n-20,b(1)=a(2)-a(1)=1
∴b(n)=b(n-1)+(n-1)-20=b(n-2)+(n-2)+(n-1)-20*2
=…=b(1)+1+2+…+(n-1)-20*(n-1)
=1+n(n-1)/2-20(n-1)
=n^2/2-41n/2+21
显然:a(n+1)-a(n)≥0且a(n)-a(n-1)≤0时a(n)最小
于是:b(n)≥0且b(n-1)≤0,解得:n=40
设:b(n)=a(n+1)-a(n)
于是:b(n+1)-b(n)=n-20,b(1)=a(2)-a(1)=1
∴b(n)=b(n-1)+(n-1)-20=b(n-2)+(n-2)+(n-1)-20*2
=…=b(1)+1+2+…+(n-1)-20*(n-1)
=1+n(n-1)/2-20(n-1)
=n^2/2-41n/2+21
显然:a(n+1)-a(n)≥0且a(n)-a(n-1)≤0时a(n)最小
于是:b(n)≥0且b(n-1)≤0,解得:n=40
已知数列{an}满足a1=4,an+1=an+p.3^n+1(n属于N+,P为常数),a1,a2+6,a3成等差数列.
已知数列{an}满足a1=1,a1+a2+a3+.+a(n-1)-an=-1(n≥2且n属于N+).
已知数列{an}满足a0=1,an=a0+a1+a2+...+a(n-1) (n≥2且n属于N*),则当n属于N*时an
已知数列an满足a1+2a2+3a3+...+nan=n(n+1)(n+p)(p为常数)其中前10项的和为175,求第1
已知数列{an}中,a1=3,且满足a(n+1)-3an=2x3^n(n属于N*)
已知数列{an}满足:a1=1,且an-a(n-1)=2n.求a2,a3,a4.求数列{an}通项an
已知数列的{an}的a1=1 且a(n+1)=[(p+1)/q]an (n属于N) ,数列{bn}的前n项和Sn=p-p
已知数列{an}满足a1=1,a2=2,a(n+2)=(an+a(n+1))/2,n属于正整数.求{an}的通项公式.
已知数列{an}满足a1=33,a(n+1)-an=2n,求an/n的最小值
设数列[an}的前n项和为Sn,a1=a ,a2=p(p>0),Sn=n(an-a1)/2
已知数列{an}中满足a1=1,a(n+1)=2an+1 (n∈N*),证明a1/a2+a2/a3+…+an/a(n+1
数列{an}的前n项和为Sn=nPan(n属于N+),且a1不等于a2(1)求常数P的值(2)证明:数列{an}是等差数