如图,以三角形ABC的一边AB为直径作圆O,圆O与BC边的交点D恰好为bc的中点,过点d做圆o的切线交ab边于点e
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 12:59:01
如图,以三角形ABC的一边AB为直径作圆O,圆O与BC边的交点D恰好为bc的中点,过点d做圆o的切线交ab边于点e
求证:1、de垂直于ac;2、连接oc交de于点f,若sin<abc=3\4求:of\fc的值
求证:1、de垂直于ac;2、连接oc交de于点f,若sin<abc=3\4求:of\fc的值
(1)证明:
∵AB是圆O的直径(已知)
∴OA=OB(圆的半径相等)
∵D是BC中点(已知)
∴OD∥AC(三角形两边的中位线平行于第三边)
∵DE是圆的切线(已知)
∴DE⊥OD(圆的切线垂直于过切点的半径)
∴DE⊥AC(一条直线垂直于另一条直线,也垂直于它的平行线)
(2)连接AD
则:∠ADB=90°(直径所对的圆周角是直角)
所以:AB=AC(线段垂直平分线上的点到线段两端的距离相等)
所以:∠ABC=∠ACB(三角形中,等边对应的角也相等)
已知sin∠ABC=3/4,则cos∠ABC=√(1-sin²∠ABC)=√7/4.
设圆半径为R,
在RT⊿ABD中,AB=2R,AD=ABsin∠ABC=2Rx(3/4)=3R/2,BD=ABcos∠ABC=2R(√7/4)=√7R/2
在RT⊿DEC中,CE=CDcos∠ACB=BDcos∠ABC=(√7R/2)x (√7/4)=7R/8
在RT⊿OFD和⊿CFE中
∵∠DOF=∠ECF
∴RT⊿OFD∽RT⊿CFE(直角三角形中,一锐角相等,两直角三角形相似)
∴OF/FC=OD/CE=R/ (7R/8)=8/7(相似三角形对应边成比例)
∵AB是圆O的直径(已知)
∴OA=OB(圆的半径相等)
∵D是BC中点(已知)
∴OD∥AC(三角形两边的中位线平行于第三边)
∵DE是圆的切线(已知)
∴DE⊥OD(圆的切线垂直于过切点的半径)
∴DE⊥AC(一条直线垂直于另一条直线,也垂直于它的平行线)
(2)连接AD
则:∠ADB=90°(直径所对的圆周角是直角)
所以:AB=AC(线段垂直平分线上的点到线段两端的距离相等)
所以:∠ABC=∠ACB(三角形中,等边对应的角也相等)
已知sin∠ABC=3/4,则cos∠ABC=√(1-sin²∠ABC)=√7/4.
设圆半径为R,
在RT⊿ABD中,AB=2R,AD=ABsin∠ABC=2Rx(3/4)=3R/2,BD=ABcos∠ABC=2R(√7/4)=√7R/2
在RT⊿DEC中,CE=CDcos∠ACB=BDcos∠ABC=(√7R/2)x (√7/4)=7R/8
在RT⊿OFD和⊿CFE中
∵∠DOF=∠ECF
∴RT⊿OFD∽RT⊿CFE(直角三角形中,一锐角相等,两直角三角形相似)
∴OF/FC=OD/CE=R/ (7R/8)=8/7(相似三角形对应边成比例)
如图,以三角形ABC的一边AB为直径作圆O,圆O与BC边的交点D恰好为BC的中点,过点D作圆O的切线交AC边于点E。 (
如图,以三角形abc的一边ab为直径作圆o,圆o与bc边的交点d恰好为bc的中点,过点d作圆o的切线交ac边于点e.①求
如图以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切线交AC边于点E.
如图,三角形ABC中,AB=AC,以AC为直径的圆O交BC于点D,交AB于点E,连接CE,过点D作圆O的切线交AB于点M
如图,在Rt△ABC中,角ACB=90°,以AC为直径的圆O与AB边交于点D,过点D作圆O的切线,交BC于点E
如图,以三角形abc的边bc为直径作圆o,圆o分别交ab、ac于d、e两点,e为弧cd的中点,cd与be交于f点
已知:如图,以等边三角形ABC一边AB为直径的圆O与边AC、BC分别交于点D、E,过点D作DF⊥BC,垂足为F
如图,在直角三角形ABC中,角ACB=90°,以AC为直角边的圆O与AB边交于点D,过点O作圆O的切线,交BC于点E,
如图以rt△abc的直角边ab为直径作圆o,与斜边AC交于点D,E为BC边上中点,连接DE,求证:DE是圆O的切线,当∠
以RT三角形ABC的直角边AB为直径作圆O,与斜边AC交于点D,E为BC上中点,连接DE
如图,以三角形ABC的边AB为直径作圆O,交BC于点D,交AC于点E,BD=DC
如图,在三角形ABC中,AB=AC,以AB为直径的圆O与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为E