数列{an},a1=1,3anan-1+an-an-1=0(n≥2).求{an}.
在数列{an}中,a1=1,3anan-1+an-1=0(n》=2)证明:{1/an}是等差数列.求数列的通项
如果数列{an}满足a1=2,a2=1,且(an-1-an)/(anan-1)=(an-an+1)/(anan+1)(n
已知数列{an}满足a1=1,an+1=2an+1(n∈N*). 若函数bn=anan+1,求数列
数列an满足an+1=2an-1且a1=3,bn=an-1/anan+1,数列bn前n项和为Sn.求数列an通项an,
数列{an},a1=1,an+1=2an-n^2+3n,求{an}.
数列{an}足a1=2,a2=1,并且an−1−anan•an−1=an−an+1an•an+1(n≥2),则数列{an
数列{an}满足a1=1,且an=an-1+3n-2,求an
已知数列{an}中,a1=1,anan+1=2n(n∈N*)
已知数列{an}中,a1=2,anan+1+an+1=2an
在数列{an}中,已知a1=1,a(n+1)=2an/(an+2),求数列{anan+1}的前n项和
数列{an}满足a1=1,an=3n+2an-1(n≥2)求an
已知数列{an} an-anan+1-an+1=0 a1=1 求{2n/an}的前n项和 注:an+1的1加在n上