已知 直线 y=-2x+6交x轴于点 A,交y轴于点B,抛物线y=ax2+bx+c经过A、B两点及x轴上另一点C,且AC
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/07 01:32:27
已知 直线 y=-2x+6交x轴于点 A,交y轴于点B,抛物线y=ax2+bx+c经过A、B两点及x轴上另一点C,且AC=2. (1)当
已知 直线 y=-2x+6交x轴于点 A,交y轴于点B,抛物线y=ax2+bx+c经过A、B两点及x轴上另一点C,且AC=2.
(1)当 tg∠BCO>tg∠BAO时,求抛物线的解析式;
(2)点D的坐标为(-2,0),在直线y=-2x+6上确定点P,使△APD与△ABO相似;
(3)在(1)、(2)的条件下,在x轴下方的抛物线上是否存在点E,使△ADE的面积等于四边形 APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.
已知 直线 y=-2x+6交x轴于点 A,交y轴于点B,抛物线y=ax2+bx+c经过A、B两点及x轴上另一点C,且AC=2.
(1)当 tg∠BCO>tg∠BAO时,求抛物线的解析式;
(2)点D的坐标为(-2,0),在直线y=-2x+6上确定点P,使△APD与△ABO相似;
(3)在(1)、(2)的条件下,在x轴下方的抛物线上是否存在点E,使△ADE的面积等于四边形 APCE的面积?如果存在,请求出点E的坐标;如果不存在,请说明理由.
.(1)设y=a(x-1)2+4(2分)
∵图象经过点(-1,0),
∴4a+4=0,a=-1(1分),
∴y=-x2+2x+3(1分);
(2)-x2+2x+3=0,解得x1=3,x2=-1,
∴B(3,0)(1分),
设y=kx+b(k≠0),
,
解得,(1分)
∴y=-2x+6,(1分)
∴D(0,6).(1分)
(3)设P(k,-2k+6),(k<3),(1分)
当△PAB∽△DOB,k=-1,
∴-2k+6=2+6=8(1分),
∴P(-1,8),(1分)
当△APB∽△DOB,过点P作PF⊥x轴,垂足为点F,
∴∠ODB=∠PAB(1分),
∴(1分),
∴,∴(1分),
综上所述,P的坐标是(-1,8)
∵图象经过点(-1,0),
∴4a+4=0,a=-1(1分),
∴y=-x2+2x+3(1分);
(2)-x2+2x+3=0,解得x1=3,x2=-1,
∴B(3,0)(1分),
设y=kx+b(k≠0),
,
解得,(1分)
∴y=-2x+6,(1分)
∴D(0,6).(1分)
(3)设P(k,-2k+6),(k<3),(1分)
当△PAB∽△DOB,k=-1,
∴-2k+6=2+6=8(1分),
∴P(-1,8),(1分)
当△APB∽△DOB,过点P作PF⊥x轴,垂足为点F,
∴∠ODB=∠PAB(1分),
∴(1分),
∴,∴(1分),
综上所述,P的坐标是(-1,8)
已知直线y=-2x-6分别交x轴,y轴于点A,B,抛物线y=ax^2+bx+c恰好也经过点A,B,且经过X轴上的另一点C
已知直线y=-2x-6分别交x轴,y轴于点A,B,抛物线y=ax^2+bx+c恰好也经过A,B,且经过x轴上的另一点C(
如图,已知抛物线y=ax2+bx-3与x轴交于A、B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线X=1,
已知直线y=-2x-6分别交于x轴,y轴于点A.B,抛物线y=ax平方+bx+c恰好也经过A,B,且经过X轴上的上的另一
如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,6
已知抛物线y=ax2+bx+c的对称轴为直线x=2,且与x轴交于A、B两点,与y轴交于点C,其中A(1,0),C(0,-
抛物线y=ax2+bx-3与轴交于A,B两点,与y轴交于C点,且经过点(2,-3a),对称轴是直线x=1,顶点是M,此题
如图,已知抛物线y=ax2+bx+3的图象与x轴交于A、B两点,与y轴交于点C,且点C、D是抛物线上的一对对称点.
设a,b,c为实数,且a≠0,抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C,且抛物线的顶点在直线y=-
如图,已知直线y=-x+3交x轴于点A,交y轴于点B,抛物线y=ax2+bx+c经过A、B、C(1,0)三点.
已知,直线y=1/2x+3与x轴,y轴分别交于A,B两点;二次函数y=ax2+bx+c的图像经过A,B,且经过点C(2,
已知抛物线y=ax2+bx+c经过A(0,2),点B(0,4),作AC垂直于AB交x轴于点C,点C正好在此抛物线上.