已知△ABC中,BD、CE是角平分线,AF⊥CE,AG⊥BD,垂足分别是F、G,求证:FG=二分之一(AB+AC-BC)
1.已知在△ABC中,BD、CE是△ABC的角平分线,AF⊥CE于F,连接FG,求证:FG与BC平行.
数学几何、代数题(1)已知:DB、CE分别是△ABC的外角平分线,过点A作AF⊥BD于F,AG⊥BC于G.求证:FG=1
如图,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G,连接FG,延长AF、AG,
求解一道几何题 bd,ce分别是△abc的内角平分线(图2)过点a作af⊥bd,ag⊥ce,垂足分别为f,g,连接fg,
几何证明(1)已知:如图1,BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连接
已知三角形abc中,bd,ce是外角平分线,ad垂直于bd,ae垂直于ce,求证ad+ae>二分之一(ab+ac+bc)
BD,CE分别是三角形ABC的外角平分线,过点A作AF垂直BD,AG垂直CE,垂足分别为F.G,连结FG,延长AF.AG
如图△ABC中AB=AC,BD、CE分别是AC、AB边上的高,BD与CE交与点O,延长AO交BC与F.求证AF⊥BC
如图,AB=AC,∠ABC=∠ACB,CE,BD是三角形ABC的中线,AG⊥CE于G,AF⊥BD于F,求证:AG=AF
)BD,CE分别是三角形ABC的外角平分线,过A点作AF垂直于BD于点F,AG垂直于CE,连结FG,求证FG=1/2(A
如图1,BD,CE分别是三角形ABC的外角平分线,过点A作AF垂直BD,AG垂直cE,垂足分别为F,G,连结FG,延长A
在三角形ABC中,BD,CE分别是AC,AB边上的高,G,F分别是BC,DE的中点.求证:FG垂直于DE .