作业帮 > 数学 > 作业

若三角形的三边a,b,c满足a(a-b)+b(b-c)+c(c-a)=0,试判断三角形的形状

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 03:24:24
若三角形的三边a,b,c满足a(a-b)+b(b-c)+c(c-a)=0,试判断三角形的形状
若三角形的三边a,b,c满足a(a-b)+b(b-c)+c(c-a)=0,试判断三角形的形状
把式子左边全部拆了
得到a^2+b^2+c^2 -ab-ac-bc=0.
;两边乘2
得(a^2-2ab+b^2) +(b^2 -2bc+c^2 ) +(a^2 -2ac+c^2)=0
即(a-b)^2 +(b-c)^2 +(a-c)^2 =0
因为(a-b)^2 ≥0 (b-c)^2≥0 (a-c)^2≥0
所以只有a=b=c时等式成立
所以三角形是等边三角形