等腰三角形ABC中,AB=AC,点P在底边BC延长线上,自点P向两腰做垂线PE,PF,点E,F为垂足,求证PE+PF的值
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 23:29:40
等腰三角形ABC中,AB=AC,点P在底边BC延长线上,自点P向两腰做垂线PE,PF,点E,F为垂足,求证PE+PF的值
点P在BC的延长线上
点P在BC的延长线上
证明:
设PE⊥AB,PF⊥AC,垂足分别E,F.过点C作CM⊥AB,垂足为M
过点C作CG⊥EP,交EP点延长线于点G
∴CG‖AB ∴∠GCP=∠B∵AB=AC∴∠ACB=∠B∴∠GCP=∠ACB
又∵∠PGC=∠PFC PC=PC ∴△PCG≌PCF∴PG=PF
∵PE⊥AB CM⊥AB CG⊥EG ∴∠GEM=∠CGE=∠CME=90°∴四边形CMEG是矩形
∴EG=CM ∴PE+PF=PE+PG=EG=CM
∴PE+PF为定值.(CM为腰AC的高,为定值)
设PE⊥AB,PF⊥AC,垂足分别E,F.过点C作CM⊥AB,垂足为M
过点C作CG⊥EP,交EP点延长线于点G
∴CG‖AB ∴∠GCP=∠B∵AB=AC∴∠ACB=∠B∴∠GCP=∠ACB
又∵∠PGC=∠PFC PC=PC ∴△PCG≌PCF∴PG=PF
∵PE⊥AB CM⊥AB CG⊥EG ∴∠GEM=∠CGE=∠CME=90°∴四边形CMEG是矩形
∴EG=CM ∴PE+PF=PE+PG=EG=CM
∴PE+PF为定值.(CM为腰AC的高,为定值)
如图,在△ABC中,AB=AC,D是BC的中点,点P在AD上,PE⊥AB,PF⊥AC,垂足分别为E,F,求证:PE=PF
已知:如图,在等腰三角形ABC中,AB=AC,P是底边BC上任意一点,过点P作PE⊥AB,PF⊥AC,垂足分别为E,F,
过等腰三角形ABC底边上某一点P,做两腰的垂线,交AB .AC于E .F求证:pE+PF等于一腰上的高
已知:在△ABC中AB=AC,点P在底边BC上,PE//AC,PF//AB,分别交BA,AC的延长线于点E,F
已知在等腰三角形ABC中,AB=AC,点P是BC边上一点,PE⊥AB于点E,PF⊥AC于点F,
已知等边三角形ABC,P为三角形ABC外任一点,自点P向三边作垂线PD,PE,PF,点D,E,F为垂足求证PD+PE+P
如图在平行四边形abcd中e是ab的延长线上的一点,de交bc于点f,交ac于点p求证pd平方=pe*pf
如图,在平行四边形ABCD中,E是AB延长线上一点,DE交BC于点F,交AC于点P.求证:PD的平方=PE乘PF
如图,P为等腰三角形ABC底边BA的延长线上任意一点,PE⊥CA的延长线于点E,PF⊥BC于点F,AD⊥BC于点D.
已知:△ABC中,AB=AC,P是BC延长线上一点,PE//AC交BA延长线与点E,PF//AB交AC延长线与F,求证:
如图2,再等腰三角形ABC中,AB=AC,点P为底边BC的延长线上的一点,PE⊥AB于点E,PE⊥AC,交AC的延长线与
如图1△ABC为等腰三角形,AD⊥BC于D,点P在BC上,且PE⊥AB于E,PE⊥AC于F.1求证AD=PE+PF