求曲线积分∫ydx+xdy,其中曲线是连接(-1,1)和(3,9)的一段曲线弧.
计算积分∫x²dy-ydx,其中L是沿曲线y²=x从点A(1,-1)到点B(1,1)的弧段
求曲线积分∫c xy^2dy-x^2ydx ,其中C是x^2+y^2=4的上半圆沿逆时针方向 求过程 谢谢
如题:设L是由曲线y^3=x^2与直线y=x连接起来的正向闭曲线,计算 (x^2)ydx+y^2dy的曲线积分(积分符号
求曲线积分fxy^2dy-x^2ydx其中L为圆周x^2+y^2=a^2的正方向 为什么我算出来是pai*a的4次.和答
计算曲线积分 ∫(x^2-y^2)dx,其中l是曲线y=x^2上从点(0,0)到点(2,4)的一段弧
曲线积分 积分c xy平方dy-x平方ydx,其中C是x平方+y平方=4的上半圆沿逆时针方向
求∫L ydx+xdy,其中L取曲线x=Rcost,y=Rsint(0≤t≤派/2)依参数增大方向.我用格林公式算出来跟
求曲线积分fxy^2dy-x^2ydx其中L为圆周x^2+y^2=a^2的正向,
求曲线积分,其中L是以A(1,1),B(3,2),C(2,5)为顶点的三角形ABC的正向边界曲线.
计算积分∫(x^3-y)dx-(x+siny)dy,其中L是曲线y=x^2上从点(0,0)到点(1,1)之间的一段有向弧
积分因子法求 3ydx+5xdy=0
第二型曲线积分问题∫L ydx+zdy+xdz,其中L是x+y=2与x^2+y^2+z^2=2(x+y)的交线,从原点看