在三角形ABC中,角A,B,C所对的边分别为a,b,c且2sin^2(A+B)/2+cos2C=1,a=1,b=2,
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/23 22:16:03
在三角形ABC中,角A,B,C所对的边分别为a,b,c且2sin^2(A+B)/2+cos2C=1,a=1,b=2,
(1)求角C和c
(2)若P为三角形ABC内任一点(含边界),点P到三边距离之和为d,设P到AB,BC的距离分别为x,y,请用x,y表示d,并求d的取值范围
(1)求角C和c
(2)若P为三角形ABC内任一点(含边界),点P到三边距离之和为d,设P到AB,BC的距离分别为x,y,请用x,y表示d,并求d的取值范围
(1):由式子:2sin^2(A+B)/2+cos2C=1
可得:2sin^2(A+B)/2=1-cos2C
=2sin^2(C)
因此:A+B=2C
由于三角形内角和为180度,
所以:C=60度
由三角余弦定理:c^2=a^2+b^2-2abcosC
得:c=sqrt(3)
(2)解题思路:面积相等
首先:在由a、b、c、C求出三角形:ABC的面积S;这里不再解答
其次:设P到AC的距离为z
所以:z=d-(x+y),
用x,y,z,a,b,c来表示三角形的面积S为:
S=(xa+yb+zc)/2
所以:S=[x(a-c)+y(b-c)+dc]/2
故:d=[2S-x(a-c)-y(b-c)]/c(这里点到为止吧)
d的取值范围还有待解决,希望对你有所帮助
可得:2sin^2(A+B)/2=1-cos2C
=2sin^2(C)
因此:A+B=2C
由于三角形内角和为180度,
所以:C=60度
由三角余弦定理:c^2=a^2+b^2-2abcosC
得:c=sqrt(3)
(2)解题思路:面积相等
首先:在由a、b、c、C求出三角形:ABC的面积S;这里不再解答
其次:设P到AC的距离为z
所以:z=d-(x+y),
用x,y,z,a,b,c来表示三角形的面积S为:
S=(xa+yb+zc)/2
所以:S=[x(a-c)+y(b-c)+dc]/2
故:d=[2S-x(a-c)-y(b-c)]/c(这里点到为止吧)
d的取值范围还有待解决,希望对你有所帮助
在三角形ABC中,角A,B,C的对边分别为a,b,c,若sin2 2C+sin2C•cos2C+cos2C=
在三角形ABC中∠A,B.C的 对边分别为abc,若a=1,c=根号7,且4sin平方A+B/2-cos2C=7/2
在锐角三角形ABC中 角A,B,C的对边分别为a,b,c 已知c=根号13 且cos2C 2=2sin^2C (1)若B
在三角形ABC中,角A,B,C的对边分别为a,b,c,4sin平方A+B-cos2C=2分之7,a+b=5,c=g根7.
三角形ABC中内角A,B,C对边分别是a,b,c且cos2C-cos2A=2(sinA-sinB)sinB.(1)求角C
在三角形ABC中,A.B.C所对的边分别为a.b.c,且bCOSc+1/2c=a.(1)求角B
在三角形ABC中,角A,B,C所对的边分别为a,b,c,且1+tanA/tanb=2c/b,求∠A
在三角形ABC中,角A,B,C的对边分别是a,b,c,且cos2C=1-8b²/a²
三角形ABC中角A,B,C(C为钝角)所对的边分别为a,b,c,且COS(A+B-C)=1/4.a=2,sin(A+B)
有关解三角形的题 在三角形ABC中 角A B C的对边分别为a b c已知a+b=5 c=根号7且cos2C+2cos(
在三角形ABC中,角A,B,C所对的边分别为a,b,c,已知cos2C= -1/4 求sinC的值
在三角形ABC中,角A,B,C所对的边分别为a,b,c.已知cos2c=-1/4