∑(-1)^n/n^2 用柯西收敛证明敛散性
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 16:38:47
∑(-1)^n/n^2 用柯西收敛证明敛散性
如果不限制方法,可以直接用Leibniz判别法解决.
所以不妨就按Leibniz判别法的证明来.
对任意ε > 0,存在N = [1/ε]+1 > 1/ε.
当n > N时有n² > n > 1/ε,故1/n² < ε.
考虑∑{n ≤ k ≤ n+p} (-1)^k/k² = (-1)^n·(1/n²-1/(n+1)²+...+(-1)^p/(n+p)²)
若p为偶数,0< (1/n²-1/(n+1)²)+...+(1/(n+p-2)²-1/(n+p-1)²)+1/(n+p)²
= 1/n²-1/(n+1)²+...+(-1)^p/(n+p)²
= 1/n²-(1/(n+1)²-1/(n+2)²)-...-(1/(n+p-1)²-1/(n+p)²)
< 1/n² < ε.
若p为奇数,0 < (1/n²-1/(n+1)²)+...+(1/(n+p-1)²-1/(n+p)²)
= 1/n²-1/(n+1)²+...+(-1)^p/(n+p)²
= 1/n²-(1/(n+1)²-1/(n+2)²)-...-(1/(n+p-2)²-1/(n+p-1)²)-1/(n+p)²
< 1/n² < ε.
即总有|∑{n ≤ k ≤ n+p} (-1)^k/k²| = |1/n²-1/(n+1)²+...+(-1)^p/(n+p)²| < ε.
由Cauchy收敛准则,级数收敛.
上面的证法放缩的比较精细,其实适用于∑{1 ≤ n} (-1)^n/n.
如果不要求这样广的适用面,也可以考虑用Cauchy收敛准则证明绝对收敛,即∑{1 ≤ n} 1/n²收敛.
其部分和0 < ∑{n ≤ k ≤ n+p} 1/k² < ∑{n ≤ k ≤ n+p} 1/(k(k-1))
= ∑{n ≤ k ≤ n+p} (1/(k-1)-1/k)
= 1/(n-1)-1/(n+p)
< 1/(n-1).
当n趋于∞时收敛到0.
由Cauchy收敛准则,∑{1 ≤ n} 1/n²收敛.
∑{1 ≤ n} (-1)^n/n²绝对收敛,从而也是收敛的.
当然也可以不用绝对收敛这一说法,直接说
|∑{n ≤ k ≤ n+p} (-1)^k/k²| ≤ ∑{n ≤ k ≤ n+p} 1/k² < 1/(n-1)收敛到0.
从而∑{1 ≤ n} (-1)^n/n²收敛.
所以不妨就按Leibniz判别法的证明来.
对任意ε > 0,存在N = [1/ε]+1 > 1/ε.
当n > N时有n² > n > 1/ε,故1/n² < ε.
考虑∑{n ≤ k ≤ n+p} (-1)^k/k² = (-1)^n·(1/n²-1/(n+1)²+...+(-1)^p/(n+p)²)
若p为偶数,0< (1/n²-1/(n+1)²)+...+(1/(n+p-2)²-1/(n+p-1)²)+1/(n+p)²
= 1/n²-1/(n+1)²+...+(-1)^p/(n+p)²
= 1/n²-(1/(n+1)²-1/(n+2)²)-...-(1/(n+p-1)²-1/(n+p)²)
< 1/n² < ε.
若p为奇数,0 < (1/n²-1/(n+1)²)+...+(1/(n+p-1)²-1/(n+p)²)
= 1/n²-1/(n+1)²+...+(-1)^p/(n+p)²
= 1/n²-(1/(n+1)²-1/(n+2)²)-...-(1/(n+p-2)²-1/(n+p-1)²)-1/(n+p)²
< 1/n² < ε.
即总有|∑{n ≤ k ≤ n+p} (-1)^k/k²| = |1/n²-1/(n+1)²+...+(-1)^p/(n+p)²| < ε.
由Cauchy收敛准则,级数收敛.
上面的证法放缩的比较精细,其实适用于∑{1 ≤ n} (-1)^n/n.
如果不要求这样广的适用面,也可以考虑用Cauchy收敛准则证明绝对收敛,即∑{1 ≤ n} 1/n²收敛.
其部分和0 < ∑{n ≤ k ≤ n+p} 1/k² < ∑{n ≤ k ≤ n+p} 1/(k(k-1))
= ∑{n ≤ k ≤ n+p} (1/(k-1)-1/k)
= 1/(n-1)-1/(n+p)
< 1/(n-1).
当n趋于∞时收敛到0.
由Cauchy收敛准则,∑{1 ≤ n} 1/n²收敛.
∑{1 ≤ n} (-1)^n/n²绝对收敛,从而也是收敛的.
当然也可以不用绝对收敛这一说法,直接说
|∑{n ≤ k ≤ n+p} (-1)^k/k²| ≤ ∑{n ≤ k ≤ n+p} 1/k² < 1/(n-1)收敛到0.
从而∑{1 ≤ n} (-1)^n/n²收敛.
如何证明级数∑1/2^(n+(-1)^n)收敛
级数收敛设级数∑Un(n=1,2,…,∞)收敛,证明∑(-1)^n*Un/n不一定收敛,(-1)^n指-1的n次方.
证明:级数∑(n=1,∞) 1/(n²+2n²)是收敛的.
设级数∑f(n)^2收敛,证明∑[f(n)/n](f(n)>0)也收敛.
证明∑(-1)^n㏑【(n+1)/n】(n=1,2,3.)是条件收敛还是绝对收敛
级数收敛性的证明求:设∑an^2收敛,证明:∑an/n绝对收敛?
如何证明级数n^n/(n!)^2是收敛的
证明级数绝对收敛若级数∑an绝对收敛,且an≠-1(n=1,2,…),证明:级数∑an/(1+an)收敛.
证明如果级数∑(1/b)^n收敛a>b>0则∑(1/a^n-b^n)收敛
若正项级数∑(1到n)an收敛,则∑(1到n)根号an/n收敛,求证明.
∑1/√n级数收敛吗?如何证明?
级数1/2的根号n次方如何证明收敛