作业帮 > 数学 > 作业

2道不定积分问题1.∫x^3/(x+1)^10 dx2.∫arcsin(2x/1+x^2) dx

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 03:11:27
2道不定积分问题
1.∫x^3/(x+1)^10 dx
2.∫arcsin(2x/1+x^2) dx
2道不定积分问题1.∫x^3/(x+1)^10 dx2.∫arcsin(2x/1+x^2) dx
1.∫x^3/(x+1)^10 dx 令t=x+1原式=∫(t-1)^3/t^10=(1/t^7-2/t^8+1/t^9-1/t^10)dt 接下来积出来,再把他t=x+1回带就好了
2.∫arcsin(2x/1+x^2) dx 分部积分
∫arcsin(2x/1+x^2) dx
=x*arcsin(2x/1+x^2)-∫xd arcsin[2x/(1+x^2)]
=x*arcsin(2x/1+x^2)-∫2x/(1+x^2)dx
=x*arcsin(2x/1+x^2)-∫1/(1+x^2)dx^2
=x*arcsin(2x/1+x^2)-ln(1+x^2)