设A,B,P均为n阶方阵其中p为可逆矩阵,A,B满足条件A²-A-2E=0,B=PAP^(-1),证明:B^(
设n阶方阵A和B满足条件A+B=AB,证明A-E为可逆矩阵
设A,B为N阶方阵,E为单位矩阵,a1,a2,.an,为B的N个特征值,且存在可逆矩阵P使B=PAP^(-1)-p^(-
设A、B均为n阶可逆矩阵,证明存在可逆矩阵P、Q,使得PAQ=B
设A,B为n阶方阵,且2A-B-AB=E,A^2=A,证明:A-B可逆,并求其逆矩阵
设A和B为n阶方阵,A^2B+AB^2=E 证明A+B可逆
设B为可逆矩阵,A是与B同阶方阵,且满足A2+AB+B2=0,证明A和A+B都是可逆矩阵.
若n阶方阵A与B满足AB+A+B=E(E为单位矩阵).证明(1)B+E为可逆矩阵(2)(B+E)^(-1)=1/2(A+
设N阶矩阵A,B满足条件A+B=AB 1证明A—E是可逆矩阵,并求其逆 2证明AB=BA
设A,B为N阶矩阵,满足2(B^-1)A=A-4E,E为N阶单位矩阵,证明:B-2E为可逆矩阵,并求它的逆矩阵
设A,B为n阶方阵,E为n阶单位矩阵,证明:若A+B=AB,则A-E可逆.
设A,B都是N阶方阵,I为N阶单位矩阵,且B=B^2,A=I+B,证明A可逆
已知A,B均为n阶矩阵,设A为阶数大于2的可逆方阵,则(A*)^-1=(A^-1)*,怎么证明