在四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD,底面ABCD为菱形,∠BAD=60°,P为AB的中点,Q为C
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/13 14:08:42
在四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD,底面ABCD为菱形,∠BAD=60°,P为AB的中点,Q为CD1的中点.
(1)求证:DP⊥平面A1ABB1;
(2)求证:PQ∥平面ADD1A1.
(1)求证:DP⊥平面A1ABB1;
(2)求证:PQ∥平面ADD1A1.
证明:(1)连接DB,由菱形ABCD可得AB=AD,又∠DAB=60°,∴△ABD是等边三角形,
∵P为AB的中点,∴DP⊥AB.
∵AA1⊥平面ABCD,∴AA1⊥DP.
又AA1∩AB=A,∴DP⊥平面A1ABB1.
(2)取CD的中点E,连接PE,EQ,又Q为CD1的中点,根据三角形的中位线定理可得EQ∥DD1,
∵EQ⊄平面ADD1A1.DD1⊂平面ADD1A1.
∴EQ∥平面ADD1A1.
由于平行四边形APED可得EP∥AD,同理可得EP∥平面ADD1A1.
∵EP∩EQ=E,∴平面EPQ∥平面ADD1A1.∴PQ∥平面ADD1A1.
∵P为AB的中点,∴DP⊥AB.
∵AA1⊥平面ABCD,∴AA1⊥DP.
又AA1∩AB=A,∴DP⊥平面A1ABB1.
(2)取CD的中点E,连接PE,EQ,又Q为CD1的中点,根据三角形的中位线定理可得EQ∥DD1,
∵EQ⊄平面ADD1A1.DD1⊂平面ADD1A1.
∴EQ∥平面ADD1A1.
由于平行四边形APED可得EP∥AD,同理可得EP∥平面ADD1A1.
∵EP∩EQ=E,∴平面EPQ∥平面ADD1A1.∴PQ∥平面ADD1A1.
四棱柱ABCD-A1B1C1D1的底面是菱形,且AA1垂直平面ABCD,∠DAB=60°,AD=AA1,F为棱AA1中点
如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为菱形,且AD=AB=AA1=2,∠BAD=60°,E为AB的
(2014•沙坪坝区二模)直四棱柱ABCD-A1B1C1D1中,底面ABCD为菱形,且∠BAD=60°,AA1=AB1,
四棱柱ABCD-A1B1C1D1中底面ABCD为正方形,侧棱AA1⊥底面ABCD,E是棱BC的中点,求证:BD1∥平面C
如图,在四棱锥P-ABCD中,底面ABCD中为菱形,∠BAD=60°,Q为AD的中点.
(平面与平面性质)如图,四棱柱ABCD-A1B1C1D1中底面ABCD为正方形侧棱AA1⊥底面ABCD,E是棱BC的中点
已知ABCD-A1B1C1D1是底面为菱形的直四棱柱,P是棱DD1的中点,∠BAD=60°,底面边长为2,若PB与平面A
已知四棱柱ABCD-A1B1C1D1的底面是菱形,AA1⊥底面ABCD,F为棱AA1的中点,M为线段BD1的中点
(2014•广州模拟)如图,直四棱柱ABCD-A1B1C1D1中,底面ABCD为菱形,且∠BAD=60°,A1A=AB,
已知ABCD-A1B1C1D1是底面为菱形的直四棱柱,P是棱DD1的中点 角BAD=60° 底面边长为2 若PB与平面A
ABCD-A1B1C1D1是底面为菱形的直四棱柱 P是棱DD1的中点 角BAD=60° 底面边长为2 四棱柱的体积为8根
(1/2)如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为平形四边形,且AD=2,AB=AA1=4,∠BAD