作业帮 > 数学 > 作业

几何E是正方形ABCD边上AD的一点,BF平分∠EBC交DC于F,求证:EB=AE+CF

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 07:41:47
几何E是正方形ABCD边上AD的一点,BF平分∠EBC交DC于F,求证:EB=AE+CF
几何E是正方形ABCD边上AD的一点,BF平分∠EBC交DC于F,求证:EB=AE+CF
延长DA到G,使AG=CF,由于AG=FC,BA=BC,GAB=FCB=90,因此AGB和BFC全等
因此GBA=FBC,BGA=BFC
由于AB//CD,因此ABF=BFC,得到BGA=ABF,
由于BF平分∠EBC,EBF=FBC,而GBA=FBC,EBF=GBA,所以EBF+ABE=GBA+ABE,GBE=ABF
结合BGA=ABF,得到BGA=GBE
因此EGB为等腰三角形,BE=GE
而GE=AE+GA=AE+CF
所以BE=AE+CF