在空间四边形ABCD中,AB=3,AC=AD=CD=2,∠BAC=∠BAD=60° 求证:平面BCD⊥平面ADC
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 17:59:16
在空间四边形ABCD中,AB=3,AC=AD=CD=2,∠BAC=∠BAD=60° 求证:平面BCD⊥平面ADC
AC=AD,∠DAC=60°===>三角形ADC是正三角形
CD=AD=AC=2
又,AB=AB,AD=AC,∠BAC=∠BAD=60°
===>ΔBAC≌ΔBAD
===>BD=BC
据余弦定理===>
BD^2=BC^2=9+4-2*2*3*1/2=7
设E为CD中点,则有AE⊥CD,BE⊥CD
∠AEB即平面BCD和ACD的二面角,只要计算得出∠AEB=90°,即证明了平面BCD垂直平面ADC
BE^2=BC^2-(CD/2)^2=7-1=6
AE^2=[(√3/2)*2]^2=3
存在:AE^2+BE^2=9=AB^2
即∠AEB=90°
所以,平面BCD垂直平面ADC
CD=AD=AC=2
又,AB=AB,AD=AC,∠BAC=∠BAD=60°
===>ΔBAC≌ΔBAD
===>BD=BC
据余弦定理===>
BD^2=BC^2=9+4-2*2*3*1/2=7
设E为CD中点,则有AE⊥CD,BE⊥CD
∠AEB即平面BCD和ACD的二面角,只要计算得出∠AEB=90°,即证明了平面BCD垂直平面ADC
BE^2=BC^2-(CD/2)^2=7-1=6
AE^2=[(√3/2)*2]^2=3
存在:AE^2+BE^2=9=AB^2
即∠AEB=90°
所以,平面BCD垂直平面ADC
空间四边形ABCD中,已知AB=3,AC=AD=2,角DAC=角BAC=角BAD=60度,求证:平面BCD^平面ADC.
在四面体ABCD中,AB=3,AC=AD=2,且∠DAC=∠BAC=∠BAD=60°,求证:平面BCD⊥平面ADC.
如图,在空间四边形ABCD中,AB=AC=AD=BC=1,CD=根号2,∠BCD=90°,求直线AC与平面BCD所成角的
在四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120° 求证:BC+CD=AC 利用旋转如何证明?
已知在四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120°.求证:(1)AC平分∠BCD;(2)BC+DC
已知四边形abcd中,ab=ad,∠bad=60°,∠bcd=120°,求证:bc+cd=ac
已知四边形ABCD中,AB=AD,AC平分∠BCD.求证:∠ABC+∠ADC=180°
已知空间四边形ABCD中,BC=AC,AD=BD,BE⊥CD与E,AH垂直于BE于H,求证AH⊥平面BCD
已知平面四边形ABCD中,AB=AD,角BAD=60度,角BCD=120度,求证:BC+DC=AC
已知:如图,在四边形ABCD中,AB=AD,∠ABC=∠ADC.求证:AC平分∠BAD
已知:如图在四边形ABCD中,AB=AD,∠ABC=∠ADC.求证:AC平分∠BAD.
已知:如图,在四边形ABCD中,AB=AD,∠ABC=∠ADC.求证:AC平分叫BAD