作业帮 > 数学 > 作业

已知函数f(x)=(1/2)cos²x-√3sinxcosx-(1/2)sin²x+1(x∈R).

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 17:35:43
已知函数f(x)=(1/2)cos²x-√3sinxcosx-(1/2)sin²x+1(x∈R).
(1)求函数f(x)的最小正周期及在区间[0,π/2]上的最大值和最小值;
(2)若函数f(x)=9/5,x∈[-π/6,π/6],求cos2x的值.
已知函数f(x)=(1/2)cos²x-√3sinxcosx-(1/2)sin²x+1(x∈R).
f(x)
=(1/2)cos²x-√3sinxcosx-(1/2)sin²x+1
=(1/2)cos2x-(√3/2)sin2x+1
=cos(2x+π/3)+1
(1)
最小正周期=2π/2=π
x∈[0,π/2]
2x+π/3∈[π/3,4π/3]
cos(2x+π/3)∈[-1,1/2]
cos(2x+π/3)+1∈[0,3/2]
最大值=3/2,最小值=0
(2)
cos(2x+π/3)+1=9/5
cos(2x+π/3)=4/5
x∈[-π/6,π/6]
2x∈[-π/3,π/3]
2x+π/3∈[0,2π/3]
∴sin(2x+π/3)=3/5
cos2x
=cos(2x+π/3-π/3)
=cos(2x+π/3)cosπ/3+sin(2x+π/3)sinπ/3
=(4+3√3)/10