作业帮 > 数学 > 作业

数论题,证明或否定:对任意自然数n>=4,+1为合数显然,此理不通

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 21:07:37
数论题,
证明或否定:
对任意自然数n>=4,+1为合数
显然,此理不通
数论题,证明或否定:对任意自然数n>=4,+1为合数显然,此理不通
结论是对的!
我用数学归纳法作
(1)n=4 必成立
(2)设当n=k时 k!+1 为合数
当n=k+1时
(k+1)!+1=(k+1)k!+1
=k*k!+k!+1
说明:∵k!+1 为合数 由合数定义
∴k!+1必定能被2.3.4.5.6……k!
之间的某个数整除.
而且k*k!必定也可被这个数整除
∴(k+1)!+1为合数
∴对任意自然数n>=4,n!+1为合数