作业帮 > 数学 > 作业

如图,△ABC中,以AB为直径的⊙O交AC于点D,∠DBC=∠BAC.⑴求证:BC是⊙O的切线

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 17:25:50
如图,△ABC中,以AB为直径的⊙O交AC于点D,∠DBC=∠BAC.⑴求证:BC是⊙O的切线
如图,△ABC中,以AB为直径的⊙O交AC于点D,∠DBC=∠BAC. ⑴求证:BC是⊙O的切线 ⑵若⊙O的半径为2,∠BAC=30°,求图中阴影部分的面积.
如图,△ABC中,以AB为直径的⊙O交AC于点D,∠DBC=∠BAC.⑴求证:BC是⊙O的切线
(1)证明:AB是⊙O直径,点D在圆上,则:AD⊥BD,即∠ADB=90°
那么∠BAC+∠ABD=90°
又∠DBC=∠BAC,即有:∠DBC+∠ABD=∠ABC=90°
AB⊥BC,点B在⊙O上
所以BC是⊙O的切线
设阴影面积为S,⊙O的半径为R,则R=2,连接OD,
∠BAC=30°,则∠BOD=60°,△BOD为等边△
S=扇形BOD-△BOD,即S=1/6*π*R²-√3/4*R²=2/3π-√3
(注:电脑很好不好打出来,谅解)