如图,△ABC中,以AB为直径的⊙O交AC于点D,∠DBC=∠BAC.⑴求证:BC是⊙O的切线
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 17:25:50
如图,△ABC中,以AB为直径的⊙O交AC于点D,∠DBC=∠BAC.⑴求证:BC是⊙O的切线
如图,△ABC中,以AB为直径的⊙O交AC于点D,∠DBC=∠BAC. ⑴求证:BC是⊙O的切线 ⑵若⊙O的半径为2,∠BAC=30°,求图中阴影部分的面积.
如图,△ABC中,以AB为直径的⊙O交AC于点D,∠DBC=∠BAC. ⑴求证:BC是⊙O的切线 ⑵若⊙O的半径为2,∠BAC=30°,求图中阴影部分的面积.
(1)证明:AB是⊙O直径,点D在圆上,则:AD⊥BD,即∠ADB=90°
那么∠BAC+∠ABD=90°
又∠DBC=∠BAC,即有:∠DBC+∠ABD=∠ABC=90°
AB⊥BC,点B在⊙O上
所以BC是⊙O的切线
设阴影面积为S,⊙O的半径为R,则R=2,连接OD,
∠BAC=30°,则∠BOD=60°,△BOD为等边△
S=扇形BOD-△BOD,即S=1/6*π*R²-√3/4*R²=2/3π-√3
(注:电脑很好不好打出来,谅解)
那么∠BAC+∠ABD=90°
又∠DBC=∠BAC,即有:∠DBC+∠ABD=∠ABC=90°
AB⊥BC,点B在⊙O上
所以BC是⊙O的切线
设阴影面积为S,⊙O的半径为R,则R=2,连接OD,
∠BAC=30°,则∠BOD=60°,△BOD为等边△
S=扇形BOD-△BOD,即S=1/6*π*R²-√3/4*R²=2/3π-√3
(注:电脑很好不好打出来,谅解)
如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交A
如图,△ABC中,以BC为直径的⊙O交AB于点D,CA是⊙O的切线,AE平分∠BAC交BC于点E,交CD于点F.
如图,Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,过点D的切线交BC于E,求证:DE=12BC.
在△ABC中,∠BAC=90°,以AB为直径的半圆O交BC于点D,过D点做圆心O的切线交AC于点P.求证:PA=PC
如图,在△ABC中,∠BAC=90°,以AB为直径的半圆O叫BC于点D,过点作圆O的切线叫AC于点P.求证:PA=PC
如图 在三角形ABC中 ∠BAC=90° 以AB为直径的圆O交BC于点D,过D做圆O的切线交于点P.求证 PA=PC
如图△ABC中∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点,求证:DE是⊙O的切线.
如图,在△ABC中,AB=AC,以AB为直径的圆O交BC于点D,过点D作DE⊥AC于E,求证:DE是圆O的切线
如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,以B为切线交OD延长线于F.求证:EF与⊙O相
已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于D,DE是⊙O的切线.
如图,在△ABC中,∠BAC=90°,AB=AC,AB是⊙O的直径,⊙O交BC于点D,DE⊥AC于点E,BE交⊙O于点F
在Rt△ABC中,∠BAC=90°,以AB为直径的圆O交BC于点D,切线DE交AC于点E,求证:DE=1/2AC