设函数f(x)=|sinx+2/(3+sinx)+m|(x属于R,m属于R)最大值为g(x),则g(x)的最小值为多少
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 06:44:23
设函数f(x)=|sinx+2/(3+sinx)+m|(x属于R,m属于R)最大值为g(x),则g(x)的最小值为多少
答案好像是3/4
正确请见下:
设函数f(x)=|sinx+2/(3+sinx)+m|(x属于R,m属于R)最大值为g(m),则g(m)的最小值为多少
答案好像是3/4
正确请见下:
设函数f(x)=|sinx+2/(3+sinx)+m|(x属于R,m属于R)最大值为g(m),则g(m)的最小值为多少
f(x)=|sinx+2/(3+sinx)+m|
=|(sinx+3)+2/(3+sinx)+m-3|
因为-1≤sinx≤1,所以2≤sinx+3≤4
很容易证明函数y=x+2/x在(0,√2]上单调递减、在[√2,+∞)上单调递增
所以(sinx+3)+2/(3+sinx)的最小值为2+2/2=3,最大值为4+2/4=9/2
令h(x)=sinx+2/(3+sinx)+m=(sinx+3)+2/(3+sinx)+m-3,f(x)=|h(x)|
则:h(x)max=9/2+m-3=m+3/2,h(x)min=3+m-3=m,即h(x)∈[m,m+3/2]
①当m≥0时,h(x)恒大于等于0,则f(x)max=g(m)=m+3/2,此时g(m)min=g(0)=3/2;
②当m≤-3/2时,h(x)恒小于等于0,则f(x)max=g(m)=-m,此时g(m)min=g(-3/2)=3/2;
③当-3/2
再问: 题目中 g(m)的m与f(x)表达式中的m不一样 是吗?
再答: 是一样的
=|(sinx+3)+2/(3+sinx)+m-3|
因为-1≤sinx≤1,所以2≤sinx+3≤4
很容易证明函数y=x+2/x在(0,√2]上单调递减、在[√2,+∞)上单调递增
所以(sinx+3)+2/(3+sinx)的最小值为2+2/2=3,最大值为4+2/4=9/2
令h(x)=sinx+2/(3+sinx)+m=(sinx+3)+2/(3+sinx)+m-3,f(x)=|h(x)|
则:h(x)max=9/2+m-3=m+3/2,h(x)min=3+m-3=m,即h(x)∈[m,m+3/2]
①当m≥0时,h(x)恒大于等于0,则f(x)max=g(m)=m+3/2,此时g(m)min=g(0)=3/2;
②当m≤-3/2时,h(x)恒小于等于0,则f(x)max=g(m)=-m,此时g(m)min=g(-3/2)=3/2;
③当-3/2
再问: 题目中 g(m)的m与f(x)表达式中的m不一样 是吗?
再答: 是一样的
设函数f(x)=|sinx+2/(3+sinx)+m|(x属于R,m属于R)最大值为g(x),则g(x)的最小值为多少
已知函数f(x)=|x|-sinx+1|x|+1(x∈R)的最大值为M,最小值为m,则M+m= ___ .
函数f(x)=cos2x+sinX(x属于R)的最大值,最小值
函数f(x)=sinx+cosx(x属于R)的最大值为
已知函数f(x)=(sinx+cosx+tanx)/cosx,x属于[-1,1]的最大值为M,最小值为m则M+m=
设函数f(x)=【(x+2)²+sinx】/(x²+4)的最大值为M,最小值为m,则M+m=?
已知函数g(x)的定义域为R,且满足g(x)+g(-x)=0 若函数f(x)=1+g(x)的最大值为M ,最小值为m 则
设函数f(x)=(x+1)2+sinx/x2+1的最大值为M,最小值为m.则m+M=
已知函数f(x)=x2-2mx+3,若x属于[-1,2],则求函数f(x)的最大值g(m),以及最小值h(m).
函数f(x)=sinx-cosx的最大值是多少(x属于R)
函数f(x)=cosx(sinx+cosx)(x属于R)的最小值
设函数g(x)=x^2-2(x属于R),f(x)=①g(x)+x+4,x=g(x)则的值域是