谁有OFDM上变频和下变频的matlab程序,急求!答得好会追加给分的!
来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/10 21:35:41
谁有OFDM上变频和下变频的matlab程序,急求!答得好会追加给分的!
function y=Disfrft(f,a,p)
% Computes discrete fractional Fourier transform
% of order a of vector x
% p (optional) is order of approximation,default N/2
N = length(f); even = rem(N,2);
shft = rem((0:N-1)+fix(N/2),N)+1;
f = f(:);
if (nargin==2),p = N/2; end;
p = min(max(2,p),N-1);
E = dFRFT(N,p);
y(shft,1)=E*(exp(-j*pi/2*a*([0:N-2 N-1+even])).'.*(E'*f(shft)));
function E=dFRFT(N,p)
%function E=dFRFT(N,a,p) returns the NxN eigenvectors of the
%Fourier transform matrix
%The optional argument p is the order of approximation
global E_saved p_saved
if (length(E_saved) = N | p_saved = p),
E = make_E(N,p);
E_saved = E; p_saved = p;
else
E = E_saved;
end;
function E = make_E(N,p)
%Returns sorted eigenvectors and eigenvalues of corresponding vectors
%Construct matrix H,use approx order ord
d2 = [1 -2 1]; d_p = 1; s = 0; st = zeros(1,N);
for k = 1:p/2,
d_p = conv(d2,d_p);
st([N-k+1:N,1:k+1]) = d_p; st(1) = 0;
temp = [1:k;1:k]; temp=temp(:)'./[1:2*k];
s = s + (-1)^(k-1)*prod(temp)*2*st;
end;
% H = circulant + diagonal
col = (0:N-1)'; row = (N:-1:1);
idx = col(:,ones(N,1)) + row(ones(N,1),:);
st = [s(N:-1:2).';s(:)];
H = st(idx)+diag(real(fft(s)));
%Construct transformation matrix V
r = floor(N/2);
even = rem(N,2);
V1 = (eye(N-1)+flipud(eye(N-1)))/sqrt(2);
V1(N-r:end,N-r:end) = -V1(N-r:end,N-r:end);
if (even),V1(r,r)=1; end
V = eye(N); V(2:N,2:N) = V1;
% Compute eigenvectors
VHV = V*H*V';
E = zeros(N);
Ev = VHV(1:r+1,1:r+1); Od = VHV(r+2:N,r+2:N);
[ve,ee]=eig(Ev); [vo,eo]=eig(Od);
%malab eig returns sorted eigenvalues
%if different routine gives unsorted eigvals,then sort first
%[d,inde] = sort(diag(ee)); [d,indo] = sort(diag(eo));
%ve = ve(:,inde'); vo = vo(:,indo');
E(1:r+1,1:r+1) = fliplr(ve); E(r+2:N,r+2:N) = fliplr(vo);
E = V*E;
%shuffle eigenvectors
ind = [1:r+1;r+2:2*r+2]; ind = ind(:);
if (even),ind([N,N+2])=[]; else ind(N+1)=[]; end
E = E(:,ind');
% Computes discrete fractional Fourier transform
% of order a of vector x
% p (optional) is order of approximation,default N/2
N = length(f); even = rem(N,2);
shft = rem((0:N-1)+fix(N/2),N)+1;
f = f(:);
if (nargin==2),p = N/2; end;
p = min(max(2,p),N-1);
E = dFRFT(N,p);
y(shft,1)=E*(exp(-j*pi/2*a*([0:N-2 N-1+even])).'.*(E'*f(shft)));
function E=dFRFT(N,p)
%function E=dFRFT(N,a,p) returns the NxN eigenvectors of the
%Fourier transform matrix
%The optional argument p is the order of approximation
global E_saved p_saved
if (length(E_saved) = N | p_saved = p),
E = make_E(N,p);
E_saved = E; p_saved = p;
else
E = E_saved;
end;
function E = make_E(N,p)
%Returns sorted eigenvectors and eigenvalues of corresponding vectors
%Construct matrix H,use approx order ord
d2 = [1 -2 1]; d_p = 1; s = 0; st = zeros(1,N);
for k = 1:p/2,
d_p = conv(d2,d_p);
st([N-k+1:N,1:k+1]) = d_p; st(1) = 0;
temp = [1:k;1:k]; temp=temp(:)'./[1:2*k];
s = s + (-1)^(k-1)*prod(temp)*2*st;
end;
% H = circulant + diagonal
col = (0:N-1)'; row = (N:-1:1);
idx = col(:,ones(N,1)) + row(ones(N,1),:);
st = [s(N:-1:2).';s(:)];
H = st(idx)+diag(real(fft(s)));
%Construct transformation matrix V
r = floor(N/2);
even = rem(N,2);
V1 = (eye(N-1)+flipud(eye(N-1)))/sqrt(2);
V1(N-r:end,N-r:end) = -V1(N-r:end,N-r:end);
if (even),V1(r,r)=1; end
V = eye(N); V(2:N,2:N) = V1;
% Compute eigenvectors
VHV = V*H*V';
E = zeros(N);
Ev = VHV(1:r+1,1:r+1); Od = VHV(r+2:N,r+2:N);
[ve,ee]=eig(Ev); [vo,eo]=eig(Od);
%malab eig returns sorted eigenvalues
%if different routine gives unsorted eigvals,then sort first
%[d,inde] = sort(diag(ee)); [d,indo] = sort(diag(eo));
%ve = ve(:,inde'); vo = vo(:,indo');
E(1:r+1,1:r+1) = fliplr(ve); E(r+2:N,r+2:N) = fliplr(vo);
E = V*E;
%shuffle eigenvectors
ind = [1:r+1;r+2:2*r+2]; ind = ind(:);
if (even),ind([N,N+2])=[]; else ind(N+1)=[]; end
E = E(:,ind');