作业帮 > 数学 > 作业

三角形ABC是等边三角形,BD是中线,延长BC至点E使CE=CD求证点D在线段BE的垂直平分线上

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 20:59:37
三角形ABC是等边三角形,BD是中线,延长BC至点E使CE=CD求证点D在线段BE的垂直平分线上
三角形ABC是等边三角形,BD是中线,延长BC至点E使CE=CD求证点D在线段BE的垂直平分线上
作DF⊥BE,垂足为F
因为三角形ABC为等边三角形
所以∠ABC=∠BCD=60°
因为CD=CE
所以∠E=∠CDE
而∠BCD=∠E+∠CDE=60°
所以∠E=∠BCD/2=30°
因为BD是AC边的中线,且三角形ABC为等边三角形
所以BD平分∠ABC
所以∠CBD=30°
所以∠CBD=∠E
所以三角形BDE为等腰三角形
因为DF⊥BE
所以BF=EF
DF为BE的垂直平分线
所以点D在线段BE的垂直平分线上
另外证法:
∵△ABC为等边三角形
∴∠BCA=60°
又∵CD=CE
∴∠CED=∠CDE
∵∠CED+∠CDE=∠BCA=60°
∴∠CED=30°
又∵CD=AD,BC=BA
∴BD平分∠CBA
又∵∠CBA=60°
∴∠CBD=∠CED=30°
即△BDE为等腰三角形
∴点D在BC的垂直平分线上