过双曲线 的上支上一点P作双曲线的切线交两条渐近线分别于点A,B.(I)求证:向量OA*向量OB 为定值;
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 14:13:46
过双曲线 的上支上一点P作双曲线的切线交两条渐近线分别于点A,B.(I)求证:向量OA*向量OB 为定值;
设双曲线方程:y^2/b^2-x^2/a^2=1,P(m,n),A(x1,y1),B(x2,y2),
则切线方程:ny/b^2-mx/a^2=1,……式
渐近线方程:y^2/b^2-x^2/a^2=0,……式
、式联立得一个关于y(或者x)的一个一元二次方程组,y1,y2即为方程的两个根,可求出:y1*y2,y1+y2,
利用式求出x1*x2=(a^2/m)*(ny1/b^2-1)*(ny2/b^2-1),
利用算出来的y1*y2,y1+y2,算出x1*x2,哪么:
x1*x2+y1*y2=OA*OB,
题量较大,但我已经简化不少了,
则切线方程:ny/b^2-mx/a^2=1,……式
渐近线方程:y^2/b^2-x^2/a^2=0,……式
、式联立得一个关于y(或者x)的一个一元二次方程组,y1,y2即为方程的两个根,可求出:y1*y2,y1+y2,
利用式求出x1*x2=(a^2/m)*(ny1/b^2-1)*(ny2/b^2-1),
利用算出来的y1*y2,y1+y2,算出x1*x2,哪么:
x1*x2+y1*y2=OA*OB,
题量较大,但我已经简化不少了,
过y^2-3x^2=3的上支上一点p作双曲线的切线交两条渐近线分别于点a,b,求证;向量oa向量ob相乘为定值
过双曲线y^2-3x^2=3的上支上一点P作双曲线交两条渐进线分别于点A,B.(1)求证:向量OA·向量OB为定值
过点M(-2,0),作直线l交双曲线x^2-y^2=1于A,B不同两点,已知向量OP=向量OA +向量OB①求点P的轨迹
已知双曲线x2/a2-y2/b2=1(a>0,b>0)及其上任一点P.求证:点P到双曲线两渐近线的距离之积为定值
过双曲线C:x2/a2-y2/b2=1上任意一点P作x轴的平行线,交双曲线的两条渐近线于Q,R,求证PQ*PR为定值
抛物线X^2=-2Y与过点M(0,-1)的直线相交于A,B两点,O为原点,求证向量OA.OB为定值
已知A是双曲线y=2/x上的一点,过点A作AB//x轴,交双曲线y=-3/x,于B,若OA⊥OB,则OA/OB=____
设直线L过双曲线X2-Y2/3=1的一个焦点,交双曲线于A,B亮点,O为坐标原点,若OA向量乘以OB向量=0,求|AB|
已知点N(1,2),过点N的直线交双曲线x^2-y^2/2=1于A B两点,且向量ON=2/1(向量OA+向量OB)
过定圆C上一点A做圆的动弦AB,O为坐标原点.若向量OP=0.5*(向量OA+向量OB),那么动点P的轨迹为椭圆吗?
设P(x,y)是双曲线x^2/a^2 -y^2/b^2=1上的任一点,过P作双曲线两条渐近线的平行线,分别交渐近线于Q,
若过点m(2.0)的直线与椭圆c相交于两点a,b.设p 为椭圆上一点,且满足oa向量加ob向量等于