RT△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC,过点C作CE⊥BD,交BD延长线于E.求证:BD=2CE
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 17:04:29
RT△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC,过点C作CE⊥BD,交BD延长线于E.求证:BD=2CE
令AB=AC=a,那么等腰直角三角形中,BC=a√2
sin∠CBD=sin22.5°=CE/BC=CE/(a√2)
sin²22.5°=[(1-cos45°)/2]=[(1-√2/2)/2]=(2-√2)/4=CE²/(2a²)
化简可得CE²=0.5(2-√2)a²
cos∠ABD=cos22.5°=AB/BD=a/BD
cos²22.5°=[(1+cos45°)/2]=[(1+√2/2)/2]=(2+√2)/4=a²/BD²
化简可得BD²=4a²/(2+√2)=4a²(2-√2)/(4-2)=2(2-√2)a²
就有BD²=4CE² 所以BD=2CE
此题应该是考察半角公式的应用
还不清楚的话,HI我啊……
sin∠CBD=sin22.5°=CE/BC=CE/(a√2)
sin²22.5°=[(1-cos45°)/2]=[(1-√2/2)/2]=(2-√2)/4=CE²/(2a²)
化简可得CE²=0.5(2-√2)a²
cos∠ABD=cos22.5°=AB/BD=a/BD
cos²22.5°=[(1+cos45°)/2]=[(1+√2/2)/2]=(2+√2)/4=a²/BD²
化简可得BD²=4a²/(2+√2)=4a²(2-√2)/(4-2)=2(2-√2)a²
就有BD²=4CE² 所以BD=2CE
此题应该是考察半角公式的应用
还不清楚的话,HI我啊……
Rt⊿ABC中,AB=AC,∠BAC=90,BC平分∠ABC,过点C作CE⊥BD交BC延长线于点E,求证:BD=2CE.
如图,Rt△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC交AC于D,作CE⊥BD交BD的延长线于E,过A作A
初三数学几何题 在Rt三角形ABC中,AB=AC ∠BAC=90° 过点C作CE垂直BD 交BD延长线于点E 求证 BD
Rt△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC交与AC于D,作CE⊥BD交BD的延长线于E,交BA的延延
已知:如图在△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC,CE⊥BD交BD的延长线于E.求证BD=2CE.
如图,在Rt△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC交AC于点D,CE⊥BD交BD的延长线于点E.
在Rt△ABC中,∠BAC=90°,AB=AC,CE⊥BD交BD的延长线于点E,并且∠1=∠2,求证:BD=2CE
1.如图,在Rt△ABC中,∠BAC=90°AB=AC,BD平分∠ABC,与AC交于点D,CE⊥BD交BD的延长线与点E
如图,在Rt△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC,CE⊥BD交BD的延长线于E,BA,CE的延长线
八年级几何题如图Rt△ABC中,∠BAC=90°,AB=AC,BD平分∠ABC交与AC于D,作CE⊥BD交BD的延长线于
如图所示,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD延长线于点E,求证:CE=1/2B
已知:如图,在等腰三角形ABC中,∠BAC=90°,BD平分∠ABC,交AC于点D,过点C作CE⊥BD,交BD的延长线于