已知函数f(x)对任意实数x、y均有f(x+y)+2=f(x)+f(y),且当x>0时,f(x)>2,f(3)=5,求不
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 08:37:28
已知函数f(x)对任意实数x、y均有f(x+y)+2=f(x)+f(y),且当x>0时,f(x)>2,f(3)=5,求不等式f(a2-2a-2)<3的解.
解抽象函数的不等式,需知函数的单调性;
用定义:任取x1<x2,x2-x1>0,则f(x2-x1)>2
∴f(x2)+f(-x1)-2>2
∴f(x2)+f(-x1)>4;
对f(x+y)+2=f(x)+f(y)取x=y=0得:
f(0)=2,再取y=-x得f(x)+f(-x)=4即f(-x)=4-f(x),
∴有f(x2)+4-f(x1)>4
∴f(x2)>f(x1)
∴f(x)在R上递增,
又f(3)=f(2)+f(1)-2=f(1)+f(1)-2+f(1)-2=3f(1)-4=5
∴f(1)=3;
于是:不等式f(a2-2a-2)<3等价于f(a2-2a-2)<f(1)
∴a2-2a-2<1
∴-1<a<3.
所以不等式的解集为:a|-1<a<3.
用定义:任取x1<x2,x2-x1>0,则f(x2-x1)>2
∴f(x2)+f(-x1)-2>2
∴f(x2)+f(-x1)>4;
对f(x+y)+2=f(x)+f(y)取x=y=0得:
f(0)=2,再取y=-x得f(x)+f(-x)=4即f(-x)=4-f(x),
∴有f(x2)+4-f(x1)>4
∴f(x2)>f(x1)
∴f(x)在R上递增,
又f(3)=f(2)+f(1)-2=f(1)+f(1)-2+f(1)-2=3f(1)-4=5
∴f(1)=3;
于是:不等式f(a2-2a-2)<3等价于f(a2-2a-2)<f(1)
∴a2-2a-2<1
∴-1<a<3.
所以不等式的解集为:a|-1<a<3.
已知函数y=f(x)对任意实数x,y都有f(x+y)=f(x)+f(y)-1且当x>0时f(x)>1,f(3)=4(1)
已知函数f(x)满足:对任意x,y∈R,都有f(x+y)=f(x)•f(y)-f(x)-f(y)+2成立,且x>0时,f
已知函数f(x)对任意实数x,y∈R,总有f(x)+f(y)=f(x+y),且当x大于0时,f(x)小于0,f(1)=-
已知函数f(x)的定义域为R,对任意实数x,y均有f(x+y)=f(x)+f(y),且当x大于0时,f(x)小于0.
已知函数f(X)对任意X,Y属于R,总有f(X)+f(Y)=f(X+Y),且当X>0时,f(X)<0,f(1)=-三分之
已知函数f(x)对任意x、y∈R,都有f(x)+f(y)=f(x+y),且当x<0时,f(x)<0,f(1)<-2∕3.
已知函数f(x)的定义域为R,对任意实数x,y满足f(x+y) =f(x)f(y)且f(x)>0,f(2)=9
已知函数f(x)对任意实数x,y都有f(xy)=f(x)+f(y)成立.求f(0)与f(1)的值
抽象函数解析式已知f(x)对任意实数x,y都有f(x+y)+2y(x+y)且f(1)=1求f(x)的解析式.应该是f(x
函数f(x)对一切实数x,y均有f(x+y)-f(x)=(x+2y=1)成立,且f(x)=0
已知f(x)对任意x、y(属于R)满足f(x)+f(y)=f(x+y) 且当x>0时,f(x)
已知函数f(x)对任意实数x,y都有f(xy)=f(x)*f(y),且f(-1)=1,f(27)=0,当0≤x<1时,f