双曲线虚轴的一个端点为M,两个焦点为F1.F2.角F1MF2=120度 则离心率为 ∠F1MO=60 怎么来的
双曲线虚轴上的一个端点为M,两个焦点为F1、F2,角F1MF2=120度,问双曲线的离心率为多少?
双曲线虚轴的一个端点为M,两个焦点为F1、F2,∠F1MF2=120°,则双曲线的离心率为( )
双曲线虚轴的一个端点为M,两个焦点为F1、F2,∠F1MF2=120°,则双曲线的离心率为______.
已知双曲线的两个焦点为F1,F2,虚轴的一个、端点B,且角F1BF2=2π/3,求此双曲线的离心率
F1,F2为双曲线x^2/16-y^2/4=1的两焦点,点M在双曲线上,且∠F1MF2=∏/2,则三角形F1MF2的
双曲线x^2/4-y^2=1的两个焦点为F1,F2,点M在双曲线上,△F1MF2的面积为根号3,则向量MF1*向量MF2
已知M为椭圆X^2/25+Y^2/9=1上的一点,F1和F2是椭圆上的两个焦点,角F1MF2=60度,则三角形的面积为多
设双曲线的实轴的左右两个端点是A1,A2,虚轴的上下两个端点为B1,B2,左右两个焦点是F1,F2,O为双曲线的中心,直
双曲线的两个焦点为f1.f2若双曲线上存在一点P,满足PF1=2PF2 则离心率的范围.
设M是椭圆X的平方/25+Y的平方/16=1上的一点,F1,F2为焦点,若角F1MF2=60度,则三角形F1MF2的面积
设有双曲线x^2/4-y^2/9=1,F1,F2是其两个焦点,点M在双曲线上.若∠F1MF2=120°,△F1MF2的面
已知双曲线x^2/4-y^2/9=1,F1,F2是其两个焦点,点M在双曲线上,若∠F1MF2=60°,求△F1MF2的面