若x+y=-1,则x^4+5yx^3+yx^2+8x^2*y^2+xy^2+5xy^3+y^4的值等于多少
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 23:05:47
若x+y=-1,则x^4+5yx^3+yx^2+8x^2*y^2+xy^2+5xy^3+y^4的值等于多少
x^4+5yx^3+yx^2+8x^2*y^2+xy^2+5xy^3+y^4
=(x^4+y^4+8x^2*y^2)+5xy(x^2+y^2)+xy(x+y)
=(x^2+y^2)^2+6x^2*y^2+5xy(x^2+y^2)+xy(x+y)
=(x^2+y^2)^2+4x^2*y^2+4xy(x^2+y^2)+2x^2*y^2+xy(x^2+y^2)+xy(x+y)
=[(x^2+y^2)+2xy]^2+xy(2xy+x^2+y^2+x+y)
=[(x+y)^2]^2+xy[(x+y)^2+(x+y)]
=(x+y)^4+xy[(x+y)^2+(x+y)]
由于x+y=-1
所以原式=(-1)^4+xy[(-1)^2+(-1)]=1+0=1
=(x^4+y^4+8x^2*y^2)+5xy(x^2+y^2)+xy(x+y)
=(x^2+y^2)^2+6x^2*y^2+5xy(x^2+y^2)+xy(x+y)
=(x^2+y^2)^2+4x^2*y^2+4xy(x^2+y^2)+2x^2*y^2+xy(x^2+y^2)+xy(x+y)
=[(x^2+y^2)+2xy]^2+xy(2xy+x^2+y^2+x+y)
=[(x+y)^2]^2+xy[(x+y)^2+(x+y)]
=(x+y)^4+xy[(x+y)^2+(x+y)]
由于x+y=-1
所以原式=(-1)^4+xy[(-1)^2+(-1)]=1+0=1
已知x-y=4xy,则2x+3xy-2yx-2xy-y
3xy+xy+2x²y+yx²+3x²y等于多少
已知xy满足x^2+y^2+4/5=2x+y 求代数式yx/x+y的值
已知:y=1−8x+8x−1+12,则代数式xy+yx+2-xy+yx−2的值为( )
-x^2y+5xy^2-yx^2合并同类项
若x+y=4,xy=3,求yx
已知x+y=2,xy=-5,则yx+xy
合并同类项:6x^2y+2xy-3x^2y^2-7x-5yx-4y^2x^2-6x^2y
已知代数式3-2xy+3yx^2+nxy-4x^2y中不含XY项,求N的值
已知x2+y2-2x-4y+5=0,分式yx−xy
已知3x2+xy-2y2=0,求(x+yx-y+4xyy
先化简,再求值: 3-2xy+3yx的平方+6xy-4x的平方y,其中x=-1,y=-2