如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,与y轴交于点C,三个交点的坐标分别为A
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 07:16:50
如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,与y轴交于点C,三个交点的坐标分别为A(-1,0),B(3,0),C(0,3).
(1)求抛物线的解析式及顶点D的坐标;
(2)若P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC面积的最大值和此时P点的坐标;
(3)若P为抛物线在第一象限上的一个动点,过点P作PQ∥AC交x轴于点Q.当点P的坐标为
时,四边形PQAC是平行四边形;当点P的坐标为
时,四边形PQAC是等腰梯形(直接写出结果,
(1)求抛物线的解析式及顶点D的坐标;
(2)若P为线段BD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAC面积的最大值和此时P点的坐标;
(3)若P为抛物线在第一象限上的一个动点,过点P作PQ∥AC交x轴于点Q.当点P的坐标为
时,四边形PQAC是平行四边形;当点P的坐标为
时,四边形PQAC是等腰梯形(直接写出结果,
1将ABC三点的坐标带到抛物线的解析式里面,带进去后为c=3,a-b+c=0,9a+3b+c=0,因为c为3,再带到两个式子中,为a-b=-3,9a-3b=-3,解一个二元一次,解得a=-1,b=2,c=3,所以解析式为y=-x的平方+2x+3,再用顶点公式算出D的坐标为(1,4)
如图抛物线y ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点与y轴交于点C三个交点的坐标分别为A(-1
如图,抛物线y=ax2+bx+c与x轴交于A,D两点,与y轴交于点C,抛物线的顶点B在第一象限,若点A的坐标为(1,0)
如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C
如图,顶点坐标为(2,-1)的抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点.
已知:如图,抛物线y=ax2-2ax+c(a≠0)与y轴交于点C(0,3),与x轴交于A、B两点,点A的坐标为(-1,0
(2012•孝感)如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)与x轴交于A,B两点,与y轴交
如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A,B两点,交y轴于点D,其中点B的坐标3.0
如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两
设a,b,c为实数,且a≠0,抛物线y=ax2+bx+c与x轴交于A,B两点,与y轴交于点C,且抛物线的顶点在直线y=-
3、如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,与y轴交于C点.△ABC为直角三角形.
如图抛物线y=ax2+bx+1与x轴交于两点A(-1,0)B(1,0),与y轴交于点C.
如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,6