作业帮 > 数学 > 作业

求函数y=x^2/(1+x^2)的单调区间和极值

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 17:42:30
求函数y=x^2/(1+x^2)的单调区间和极值
求函数y=x^2/(1+x^2)的单调区间和极值
法一:
既然y=2x/(1+x^2)
当x不等于0时,原函数可化为y=2/(1/x+x)
已知函数y=1/x+x在(-无穷,-2]递增(-2,0)递减(0,2)递减[2,+无穷)递增;
所以y=2/(1/x+x)在(-无穷,-2]递减(-2,0)递增(0,2)递增[2,+无穷)递减;
求y=2/(1/x+x)在x=0极限可知原函数在x=0连续,但对于此题无意义.
法二:
如果你会求导数可以通过求导,根据导函数的正负即可判断递增与递减区间.
请采纳答案,支持我一下.
再问: 是x的2次方除以,不是x乘2